Skip to main content
Log in

Chitosan–Carrageenan Gels

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Phase behavior of the systems during the formation of polyelectrolyte complexes obtained by mixing of aqueous solutions of chitosan and ι-, κ-, or λ-carrageenan was studied. The gelation was shown to occur throughout the whole bulk solution at chitosan and λ-carrageenan concentrations higher than 0.1 and 0.3 wt %, respectively. At lower polysaccharide concentrations, the polyelectrolyte complexes precipitated. The study was performed at the polysaccharide concentrations not higher than 1 wt %. The gel systems were investigated by the dynamic rheology method. The mechanical characteristics of λ-carrageenan-containing gels were found to be mainly governed by the chitosan content; the viscosity of these gels was independent of temperature. Gels obtained with ι- and κ-carrageenans were sensitive to temperature because of the helix–coil conformational transitions in their molecules. The mechanical strength and stiffness of gels increase in the λ–ι–κ-carrageenan series. This effect was explained by the formation of additional crosslinks by double helixes of ι- and κ-carrageenan molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Roberts, G.A.F., Chitin Chemistry, Basingstoke: Mac-Millan, 1992.

    Google Scholar 

  2. Hudson, S.M. and Smith, C., Biopolymers from Renewable Resources, Kaplan, D.L., Ed., Berlin: Springer-Verlag, 1998, p. 96.

  3. Winterowd, J.G. and Sandford, P.A., Food Polysaccharides and Their Applications, Stephen, A.M., Ed., New York: Marcel Dekker, 1995, p. 441.

    Google Scholar 

  4. Gruber, J.V., Principles of Polymer Science and Technology in Cosmetics and Personal Care, Goddard, E.D. and Gruber, J.V., Eds., New York: Marcel Dekker, 1999, p. 325.

    Google Scholar 

  5. Kaplan, D.L., Biopolymers from Renewable Resources, Kaplan, D.L., Ed., Berlin: Springer-Verlag, 1998, p. 1.

    Google Scholar 

  6. Hirano, S., Biotechnol. Annu. Rev., 1996, vol. 2, p. 237.

    Google Scholar 

  7. Sandford, P.A., Chitin and Chitosan. Sources, Chemistry, Biochemistry, Physical Properties, and Applications, Skjak-Braek, G., Anthonsen, T., and Sandford, P.A., Eds., London: Elsevier Applied Science, 1989, p. 51.

    Google Scholar 

  8. Kivman, G.Ya., Lyashenko, Yu.V., Rabinovich, E.E., and Fleiderman, Ya.I., Khim.-Farm. Zh., 1994, p. 21.

  9. Martin, P., Science, 1997, vol. 276, p. 75.

    Google Scholar 

  10. Singh, D.K. and Ray, A.R., J. Macromol. Sci., Rev. Macromol. Chem. Phys., 2000, vol. C40, p. 69.

  11. Painter, T.J., The Polysaccharides, Aspinall, G.O., Ed., New York: Academic, 1983, p. 195.

    Google Scholar 

  12. Piculell, L., Food Polysaccharides and Their Applications, Stephen, A.M., Ed., New York: Marcel Dekker, 1995, p. 205.

    Google Scholar 

  13. Stanley, N.F., Food Gels, Morris, P., Ed., London: Elsevier Applied Science, 1990, p. 79.

    Google Scholar 

  14. Therkelsen, G.H., Industrial Gums: Polysaccharides and Their Derivatives, Whistler, R.L. and BeMiller, J.N., Eds., San Diego: Academic, 1993, p. 145.

    Google Scholar 

  15. Kabanov, V.A., Macromolecular Complexes in Chemistry and Biology, Dubin, P., Bock, J., Davis, R., Schulz, D.N., and Thies, C., Eds., Berlin: Springer-Verlag, 1994, p. 151.

    Google Scholar 

  16. Morris, E.R., Food Gels, Harris, P., Ed., London: Elsevier Applied Science, 1990, p. 291.

    Google Scholar 

  17. Morris, V.J. and Wilde, P.J., Curr. Opin. Colloid Interface Sci., 1997, vol. 2, p. 567.

    Google Scholar 

  18. Smid, J. and Fish, D., Encyclopedia of Polymer Science Engineering, Mark, H.F., Bikales, N.M., Overberger, C.G., and Menges, G., Eds., New York: Wiley Interscience, 1988, p. 720.

    Google Scholar 

  19. Tsuchida, E. and Abe, K., Adv. Polym. Sci., 1982, vol. 45, p. 1.

    Google Scholar 

  20. Williams, P.A. and Phillips, G.O., Food Polysaccharides and Their Applications, Stephen, A.M., Ed., New York: Marcel Dekker, 1995, p. 463.

    Google Scholar 

  21. Zezin, A.B. and Kabanov, V.A., Usp. Khim., 1982, vol. 51, p. 1447.

    Google Scholar 

  22. Kotz, J. and Beitz, T., Trends Polym. Sci., 1997, vol. 5, p. 86.

    Google Scholar 

  23. Piculell, L. and Lindman, B., Adv. Colloid. Interface Sci., 1992, vol. 41, p. 149.

    Google Scholar 

  24. Hwang, C., Rha, C.K., and Sinskey, A.J., Chitin in Nature and Technology, Muzzarelli, R.A.A., Jeniaux, C., and Gooday, G.W., Eds., New York: Plenum, 1986, p. 389.

    Google Scholar 

  25. Domard, A., Advances in Chitin Science: 7th Int. Conf. on Chitin and Chitosan, Domard, A., Roberts, G.A.F., and Varum, K.M., Eds., Lyon: Jacques Andre Publ., 1998, p. 410.

    Google Scholar 

  26. Sinitsin, A.P., Rainina, B.I., Lozinskii, V.I., and Spasov, S.D., Immobilizovannye kletki mikroorganizmov (Immobilized Microorganism Cells), Moscow: Mosk. Gos. Univ., 1994.

    Google Scholar 

  27. Fukuda, H. and Kikuchi, Y., Macromol. Chem. Phys., 1977, vol. 178, p. 2895.

    Google Scholar 

  28. Gaserod, O., Smidsrod, O., and Skjak-Braek, G., Biomaterials, 1998, vol. 19, p. 1815.

    Google Scholar 

  29. Kim, H.-J., Lee, H.-C., Oh, J.-S., Shin, B.-A., Oh, C.-S., Park, R.-D., Yang, K.-S., and Cho, C.-S., J. Biomater. Sci. Polym. Ed., 1999, vol. 10, p. 543.

    Google Scholar 

  30. Kotz, J. and Kosmella, S., Advances in Chitin Science: 7th Int. Conf. on Chitin and Chitosan, Domard, A., Roberts, G.A.F., and Varum, K.M., Eds., Lyon: Jacques Andre Publ., 1998, p. 476.

    Google Scholar 

  31. Yao, K.D., Peng, T., Yin, Y.J., Xu, M.X., and Goosen, M.F.A., J. Macromol. Sci., Rev. Macromol. Chem. Phys., 1995, vol. C35, p. 155.

  32. Beaumont, M.D. and Knorr, D., Biotechnol. Lett., 1987, vol. 9, p. 377.

    Google Scholar 

  33. Mireles, C., Martino, M., Bouzas, J., and Torres, J.A., Advances in Chitin and Chitosan, Porine, C.J., Sandford, P.A., and Zikakis, J.P., Eds., London: Elsevier Applied Science, 1992, p. 506.

    Google Scholar 

  34. Sakiyama, T., Chu, C.-H., Fujii, T., and Yano, T., J. Appl. Polym. Sci., 1993, vol. 50, p. 2021.

    Google Scholar 

  35. Sakiyama, T., Takata, H., Kikuchi, M., and Nakanishi, K., J. Appl. Polym. Sci., 1999, vol. 73, p. 2227.

    Google Scholar 

  36. Hugerth, A., Caramlelham, N., and Sundelof, L.O., Carbohydrate Polym., 1997, vol. 34, p. 149.

    Google Scholar 

  37. Larson, R.G., The Structure and Rheology of Complex Fluids, New York: Oxford Univ. Press, 1999.

    Google Scholar 

  38. Ferry, J.D., Viscoelastic Properties of Polymers, New York: Wiley, 1980.

    Google Scholar 

  39. Schramm, G.A., Practical Approach to Rheology and Rheometry, Karlsruhe: Haake, 1994.

    Google Scholar 

  40. Wissbrun, K.F., Rheological Measurements, Collyer, A.A. and Clegg, D.W., Eds., London: Chapman and Hall, 1998, p. 392.

    Google Scholar 

  41. Guenet, J.M., Thermoreversible Gelation of Polymers and Biopolymers, London: Academic, 1992.

    Google Scholar 

  42. Morris, E.R. and Norton, I.T., Stud. Phys. Theor. Chem., 1983, vol. 26, p. 549.

    Google Scholar 

  43. Morris, V.J., Functional Properties of Food Macromolecules, Mitchell, J.R., and Ledward, D.A., Eds., London: Elsevier Applied Science, 1986, p. 121.

    Google Scholar 

  44. Te Nijenhuis, K., Adv. Polym. Sci., 1997, vol. 130, p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shumilina, E.V., Shchipunov, Y.A. Chitosan–Carrageenan Gels. Colloid Journal 64, 372–378 (2002). https://doi.org/10.1023/A:1015985229667

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015985229667

Keywords

Navigation