Skip to main content
Log in

The Role of Calcium Ions and Bile Salts on the Pancreatic Lipase-Catalyzed Hydrolysis of Triglyceride Emulsions Stabilized with Lecithin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Lecithin-stabilized triglyceride emulsions are subject to hydrolysis by pancreatic lipase. The time profiles of these reactions are characterized by a lag-phase and a zero-order phase. Lag phases are more pronounced with long-chain triglycerides. Ca2+ is effective in reducing the lag-phase and activating lipase. Kinetic analysis of the reactions suggests that, like previous findings by others, taurodeoxycholate (TDC) micellar solutions combine with the lipase–colipase complex to form another catalytically active enzyme form. This enzyme form exhibits reduced activity in the absence of Ca2+. In the presence of Ca2+ the mixed micelle–lipase complex becomes more active and opens a new pathway for lipolysis. It is suggested that this enzyme form can bind more easily to interfaces with different physicochemical properties. Under these conditions, Ca2+ activates the lipolysis of short-, medium-, and long-chain triglycerides by a similar mechanism. Maximum activities were measured in the presence of approximately 6 mM TDC and 30 mM Ca2+. The experimental conditions approximate the physiological conditions in the gastrointestinal tract since all of the factors studied here have been reported to be necessary for in vivo lipolysis and/or absorption of triglycerides. A mechanistic model for lipolysis in the presence of Ca2+ and the bile salt TDC is proposed which accounts for most of the experimental observations in a quantitative manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. H. Brokerhoff and R. G. Jensen. Lipolytic Enzymes, Academic Press, New York, 1974.

    Google Scholar 

  2. R. Verger. In B. Borgström and H. L. Brockman (eds.), Lipases, Elsevier, Amsterdam, 1984, pp. 83–150.

    Google Scholar 

  3. R. Verger and G. H. DeHaas. Annu. Rev. Biophys. Bioeng. 5:77–117 (1976).

    Google Scholar 

  4. R. Verger. In D. L. Purich (ed.), Methods in Enzymology, Vol. 64, Academic Press, New York, 1980, pp. 340–392.

    Google Scholar 

  5. Intralipid(R) 10% is a sterile fat emulsion based on soybean oil. Specifications from the manufacturer indicate that the particle size of the fat particles is not larger than 0.5 μm. The particle size of this emulsion was determined in this laboratory. It was 0.28 ± 0.11 μm.

  6. A. J. Moolenaar, van Slooten, A. P. van Seters, and D. Smeenk. Cancer Chemother. Pharmacol. 7:51–54 (1981); A. D. J. Watson, A. Rijnberk, and A. J. Moolenaar. Res. Vet. Sci. 43:160–165 (1987).

    Google Scholar 

  7. B. Borgström. Gastroenterology 78:954–962 (1980).

    Google Scholar 

  8. H. Brokerhoff. Biochim. Biophys. Acta 159:296–303 (1968).

    Google Scholar 

  9. T. Wieloch, B. Borgström, G. Pieroni, F. Pattus, and R. Verger. J. Biol. Chem. 257:11523–11528 (1982).

    Google Scholar 

  10. Unpublished results from this laboratory.

  11. G. Benzonana and P. Desnuelle. Biochim. Biophys. Acta 164:47–58 (1968).

    Google Scholar 

  12. W. J. Brown, A. A. Belmonte, and P. Melius. Biochim. Biophys. Acta 486:313–321 (1977).

    Google Scholar 

  13. B. Borgström and C. Erlanson. Eur. J. Biochem. 37:60–68 (1973).

    Google Scholar 

  14. M. F. Mayli, M. Charles, M. Astier, and P. Desnuelle. Biochem. Biophys. Res. Comm. 52:291–297 (1973).

    Google Scholar 

  15. E. Klein, R. B. Lyman, Jr., L. Peterson, and R. I. Berger. Life Sci. 6:1305–1307 (1967).

    Google Scholar 

  16. G. Nalbone, D. Lairon, M. Charbonnier-Augeire, J. L. Vigne, J. Leornardi, C. Chabert, C. Hauton, and R. Verger. Biochim. Biophys. Acta 620:612–625 (1980).

    Google Scholar 

  17. G. Nalbone, M. Charbonnier-Augeire, H. Lafont, R. Grataroli, J. L. Vigne, D. Lairon, C. Chabert, J. Leornardi, C. Hauton, and R. Verger. J. Lipid Res. 24:1441–1450 (1983).

    Google Scholar 

  18. J. S. Patton and M. C. Carey. Am. J. Physiol. 241:G328–G336 (1981).

    Google Scholar 

  19. A. Sugihara, Y. Gargouri, C. Pieroni, L. Sarda, and R. Verger. Biochemistry 25:3430–3434 (1986).

    Google Scholar 

  20. D. Lairon, G. Nalbone, H. Lafont, G. Leonardi, J. L. Vigne, C. Chabert, J. C. Hauton, and R. Verger. Biochim. Biophys. Acta 618:119–128 (1980).

    Google Scholar 

  21. L. Bläckberg, O. Hernell, G. Bengtsson, and T. Olivecrona. J. Clin. Invest. 64:1303–1308 (1979).

    Google Scholar 

  22. Y. Gargouri, G. Pieroni, C. Riviere, L. Sarda, and R. Verger. Biochemistry 25:1733–1738 (1986).

    Google Scholar 

  23. S. Granon and M. Semeriva. Eur. J. Biochem. 111:117–124 (1980).

    Google Scholar 

  24. J. S. Patton, P. A. Albertsson, C. Erlanson, and B. Borgström. J. Biol. Chem. 253:4195–4202 (1978).

    Google Scholar 

  25. D. M. Small. In P. P. Nair and D. Kritchevsky (eds.), The Bile Acids, Vol. I, Plenum Press, New York, 1971, pp. 249–355.

    Google Scholar 

  26. W. E. Momsen and H. L. Brockman. J. Biol. Chem. 251:378–383 (1976).

    Google Scholar 

  27. J. S. Patton, J. Donner, and B. Borgström. Biochim. Biophys. Acta 529:67–78 (1978).

    Google Scholar 

  28. P. Tso and M. Scobey. In A. Kukis (ed.), Fat Absorption, Vol. 1, CRC Press, Boca Raton, Fla., 1986, pp. 177–196.

    Google Scholar 

  29. G. Pieroni and R. Verger. J. Biol. Chem. 254:10090–10094 (1979).

    Google Scholar 

  30. By “micelles” we mean an actual micelle or a mixed-micelle or several TDC molecules binding in a cooperative manner. See, for example, W. E. Momsen and H. L. Brockman. J. Biol. Chem. 251:384–388 (1976).

    Google Scholar 

  31. D. Lairon, G. Nalbone, H. Lafont, J. Leonardi, N. Domingo, J. C. Hauton, and R. Verger. Biochemistry 17:5263–5269 (1978).

    Google Scholar 

  32. D. Lairon, G. Nalbone, H. Lafont, N. Domingo, and J. C. Hauton. Lipids 13:211–216 (1977).

    Google Scholar 

  33. J. F. Mead, R. B. Alfin-Slater, D. Howton, and K. G. Popjak. In Lipids, Chemistry, Biochemistry and Nutrition, Plenum Press, New York, 1986, pp. 255–272.

    Google Scholar 

  34. E. J. Masoro. Annu. Rev. Physiol. 39:301–321 (1977).

    Google Scholar 

  35. A. B. R. Thomson, and J. M. Dietschy. In L. R. Johnson (ed.), Physiology of the Gastrointestinal Tract, Raven Press, New York, 1981, pp. 1147–1220.

    Google Scholar 

  36. G. Benzonana. Biochim. Biophys. Acta 151:137–146 (1968).

    Google Scholar 

  37. C. M. Mansbach, R. S. Cohen, and P. B. Leff. J. Clin. Invest. 56:781–791 (1975).

    Google Scholar 

  38. R. H. Palmer. In P. P. Nair and D. Kritchevsky (eds.), The Bile Acids, Plenum Press, New York, 1973, Vol. II, pp. 153–190.

    Google Scholar 

  39. N. Rajagopalan and S. Lindenbaum. Biochim. Biophys. Acta 711:66–74 (1982).

    Google Scholar 

  40. J. S. Patton and M. C. Carey. Science 204:145–148 (1979).

    Google Scholar 

  41. J. F. Mead, R. B. Alfin-Slater, D. Howton, and K. G. Popjak. In Lipids, Chemistry, Biochemistry and Nutrition, Plenum Press, New York, 1986, Chap. 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, F.J., Stella, V.J. The Role of Calcium Ions and Bile Salts on the Pancreatic Lipase-Catalyzed Hydrolysis of Triglyceride Emulsions Stabilized with Lecithin. Pharm Res 6, 449–457 (1989). https://doi.org/10.1023/A:1015956104500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015956104500

Navigation