Skip to main content
Log in

Phospholipase D/phosphatidic acid signal transduction: Role and physiological significance in lung

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Phospholipase D (PLD), a phospholipid phosphohydrolase, catalyzes the hydrolysis of phosphatidylcholine and other membrane phospholipids to phosphatidic acid (PA) and choline. PLD, ubiquitous in mammals, is a critical enzyme in intracellular signal transduction. PA generated by agonist- or reactive oxygen species (ROS)-mediated activation of the PLD1 and PLD2 isoforms can be subsequently converted to lysoPA (LPA) or diacylglycerol (DAG) by phospholipase A1/A2 or lipid phosphate phosphatases. In pulmonary epithelial and vascular endothelial cells, a wide variety of agonists stimulate PLD and involve Src kinases, p-38 mitogen activated protein kinase, calcium and small G proteins. PA derived from the PLD pathway has second messenger functions. In endothelial cells, PA regulates NAD[P]H oxidase activity and barrier function. In airway epithelial cells, sphingosine-1-phosphate and PA-induced IL-8 secretion and ERK1/2 phosphorylation is regulated by PA. PA can be metabolized to LPA and DAG, which function as first- and second-messengers, respectively. Signaling enzymes such as Raf 1, protein kinase Cζ and type I phosphatidylinositol-4-phosphate 5-kinase are also regulated by PA in mammalian cells. Thus, PA and its metabolic products play a central role in modulating endothelial and epithelial cell functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heller M: Phospholipase D. Adv Lipid Res 16: 267–326, 1978

    PubMed  Google Scholar 

  2. Billah MM, Anthes JC: The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J 269: 281–291, 1990

    PubMed  Google Scholar 

  3. Liscovitch M, Czarny M, Giusy F, Tang X: Phospholipase D: Molecular and cell biology of a novel gene family. Biochem J 345: 401–415, 2000

    PubMed  Google Scholar 

  4. Billah MM, Lapetina EG, Cuatrecasas P: Phospholipase A2 activity specific for phosphatidic acid. A possible mechanism for the production of arachidonic acid in platelets. J Biol Chem 256: 5399–5403, 1981

    PubMed  Google Scholar 

  5. Brindley DN, Waggoner DW: Phosphatidate phosphohydrolase and signal transduction. Chem Phys Lipids 80: 45–57, 1996

    PubMed  Google Scholar 

  6. Roberts RZ, Morris AJ: Role of phosphatidic acid phosphatase 2a in uptake of extracellular lipid phosphate mediators. Biochim Biophys Acta 1487: 33–49, 2000

    PubMed  Google Scholar 

  7. Moolenaar WH: Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem 270: 12949–12952, 1995

    PubMed  Google Scholar 

  8. Moolenaar WH: Bioactive lysophospholipids and their G protein-coupled receptors. Exp Cell Res 253: 230–238, 1999

    PubMed  Google Scholar 

  9. Nishizuka Y: The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308: 693–698, 1984

    PubMed  Google Scholar 

  10. Contos JJ, Ishii I, Chun J: Lysophosphatidic acid receptors. Mol Pharmacol 58: 1188–1196, 2000

    PubMed  Google Scholar 

  11. Howlett AC, Mukhopadhyay S: Cellular signal transduction by anandamide and 2-arachidonoylglycerol. Chem Phys Lipids 108: 53–70, 2000

    PubMed  Google Scholar 

  12. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, Pertwee RG, Griffin G, Bayewitch M, Barg J, Vogel Z: Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50: 83–90, 1995

    PubMed  Google Scholar 

  13. Hernandez-Alcoceba R, Saniger L, Campos J, Nunez MC, Khaless F, Gallo MA, Espinosa A, Lacal JC: Choline kinase inhibitors as a novel approach for antiproliferative drug design. Oncogene 15: 2289–2301, 1997

    Article  PubMed  Google Scholar 

  14. Morris AJ, Frohman MA, Engebrecht J: Measurement of phospholipase D activity. Anal Biochem 252: 1–9, 1997

    Article  PubMed  Google Scholar 

  15. Ella KM, Meier KE, Kumar A, Zhang Y, Meier GP: Utilization of alcohols by plant and mammalian phospholipase D. Biochem Mol Biol Int 1: 715–724, 1997

    Google Scholar 

  16. Hammond SM, Altshuller YM, Sung TC, Rudge SA, Rose K, Engebrecht J, Morris AJ, Frohman MA: Human ADP-ribosylation factoractivated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J Biol Chem 270: 29640–29643, 1995

    Article  PubMed  Google Scholar 

  17. Hammond SM, Jenco JM, Nakashima S, Cadwallader K, Gu Q, Cook S, Nozawa Y, Prestwich GD, Frohman MA, Morris AJ: Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-α. J Biol Chem 272: 3860–3868, 1997

    Article  PubMed  Google Scholar 

  18. Frohman MA, Morris AJ: Phospholipase D structure and regulation. Chem Phys Lipids 98: 127–140, 1999

    Article  PubMed  Google Scholar 

  19. Xu Y, Seet LF, Hanson B, Hong W: The Phox homology (PX) domain, a new player in phosphoinositide signaling. Biochem J 360: 513–530, 2001

    Article  PubMed  Google Scholar 

  20. Wishart MJ, Taylor GS, Dixon JE: Phoxy lipids: Revealing PX domains as phosphoinositide binding modules. Cell 105: 817–820, 2001

    Article  PubMed  Google Scholar 

  21. Frohman MA, Sung TC, Morris AJ: Mammalian phospholipase D structure and regulation. Biochim Biophys Acta 1439: 175–186, 1999

    PubMed  Google Scholar 

  22. Meier KE, Gibbs TC, Knoepp SM, Ella KM: Expression of phospholipase D isoforms in mammalian cells. Biochim Biophys Acta 1439: 199–213, 1999

    PubMed  Google Scholar 

  23. Ohguchi K, Nakashima S, Nozawa Y: Phospholipase D development during differentiation of human promyelocytic leukemic HL60 cells. Biochim Biophys Acta 1439: 215–227, 1999

    PubMed  Google Scholar 

  24. Griner RD, Qin F, Jung E, Sue-Ling CK, Crawford KB, Mann-Blakeney R, Bollag RJ, Bollag WB: 1,25-dihydroxyvitamin D3 induces phospholipase D-1 expression in primary mouse epidermal keratinocytes. J Biol Chem 274: 4663–4670, 1999

    PubMed  Google Scholar 

  25. Uchida N, Okamura S, Kuwano H: Phospholipase D activity in human gastric carcinoma. Anticancer Res 19: 671–675, 1999

    PubMed  Google Scholar 

  26. Uchida N, Okamura S, Nagamachi Y, Yamashita S: Increased phospholipase D activity in human breast cancer. J Cancer Res Clin Oncol 123: 280–285, 1997

    PubMed  Google Scholar 

  27. Zhao Y, Ehara H, Akao Y, Shamoto M, Nakagawa Y, Banno Y, Deguchi T, Ohishi N, Yagi K, Nozawa Y: Increased activity and intranuclear expression of phospholipase D2 in human renal cancer. Biochem Biophys Res Commun 278: 140–143, 2000

    Article  PubMed  Google Scholar 

  28. Yoshida M, Okamura S, Kodaki T, Mori M, Yamashita S: Enhanced levels of oleate-dependent and Arf-dependent phospholipase D isoforms in experimental colon cancer. Oncol Res 10: 399–406, 1998

    PubMed  Google Scholar 

  29. Noh DY, Ahn SJ, Lee RA, Park IA, Kim JH, Suh PG, Ryu SH, Lee KH, Han JS: Overexpression of phospholipase D1 in human breast cancer tissues. Cancer Lett 161: 207–214, 2000

    Article  PubMed  Google Scholar 

  30. Hanahan DJ, Chaikoff IL: On the nature of the phosphorus-containing lipids of cabbage leaves and their relation to a phospholipid-splitting enzyme contained in these leaves. J Biol Chem 172: 191–198, 1948

    Google Scholar 

  31. Kobayashi M, Kanfer JN: Phosphatidylethanol formation via transphosphatidylation by rat brain synaptosomal phospholipase D. J Neurochem 48: 1597–1603, 1987

    PubMed  Google Scholar 

  32. Liscovitch M, Chalifa V: Signal-activated phospholipase D. In: M. Liscovitch (ed), Signal-Activated Phospholipases. Landes, Austin, TX, 1994, pp 31–63

    Google Scholar 

  33. Bocckino SB, Blackmore PF, Wilson PB, Exton JH: Phosphatidate accumulation in hormone-treated hepatocytes via a phospholipase D mechanism. J Biol Chem 262: 15309–15315, 1987

    PubMed  Google Scholar 

  34. Natarajan V, Scribner WM, Vepa S: Regulation of phospholipase D by tyrosine kinases. Chem Phys Lipids 80: 103–116, 1996

    Article  PubMed  Google Scholar 

  35. Morris AJ, Engebrecht J, Frohman MA: Structure and regulation of phospholipase D. Trends Pharmacol Sci 17: 182–185, 1996

    Article  PubMed  Google Scholar 

  36. Exton JH: Phospholipase D. Ann NY Acad Sci 905: 61–68, 2000

    PubMed  Google Scholar 

  37. Berridge MJ, Irvine RF: Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321, 1984

    Article  PubMed  Google Scholar 

  38. Kiss Z: Regulation of phospholipase D by protein kinase C. Chem Phys Lipids 80: 81–102, 1996

    PubMed  Google Scholar 

  39. Natarajan V, Scribner WM, Morris AJ, Roy S, Vepa S, Yang J, Wadgaonkar R, Reddy SP, Garcia JG, Parinandi NL: Role of p38 MAP kinase in diperoxovanadate-induced phospholipase D activation in endothelial cells. Am J Physiol Lung Cell Mol Physiol 281: L435–449, 2001

    PubMed  Google Scholar 

  40. Parinandi NL, Roy S, Shi S, Cummings RJ, Morris AJ, Garcia JG, Natarajan V: Role of Src kinase in diperoxovanadate-mediated activation of phospholipase D in endothelial cells. Arch Biochem Biophys 396: 231–243, 2001

    Article  PubMed  Google Scholar 

  41. Natarajan V: Oxidants and signal transduction in vascular endothelium. J Lab Clin Med 125: 26–37, 1995

    PubMed  Google Scholar 

  42. Fialkow L, Downey GP: Reactive oxygen intermediates as signaling molecules regulating leukocyte activation. In: H.J. Forman (ed), Oxidative Stress and Signal Transduction. Chapman and Hall, New York, 1997, pp 200–215

    Google Scholar 

  43. Bourgoin S, Grinstein S: Peroxides of vanadate induce activation of phospholipase D in HL-60 cells. Role of tyrosine phosphorylation. J Biol Chem 267: 11908–11916, 1992

    PubMed  Google Scholar 

  44. Vepa S, Scribner WM, Natarajan V: Activation of protein phosphorylation by oxidants in vascular endothelial cells: Identification of tyrosine phosphorylation of caveolin. Free Radic Biol Med 22: 25–35, 1997

    Article  PubMed  Google Scholar 

  45. Natarajan V, Taher MM, Roehm B, Parinandi NL, Schmid HHO, Kiss Z, Garcia JGN: Activation of endothelial cell phospholipase D by hydrogen peroxide and fatty acid hydroperoxide. J Biol Chem 268: 930–937, 1993

    PubMed  Google Scholar 

  46. Natarajan V, Scribner WM, Al-Hassani M, Vepa S: Reactive oxygen species signaling through regulation of protein tyrosine phosphorylation in endothelial cells. Environ Health Perspect 106: 1205–1212, 1998

    PubMed  Google Scholar 

  47. Min DS, Kim EG, Exton JH: Involvement of tyrosine phosphorylation and protein kinase C in the actiavation of phospholipase D by H2O2 in Swiss 3T3 fibroblasts. J Biol Chem 273: 29986–29994, 1998

    Article  PubMed  Google Scholar 

  48. Natarajan V, Scribner WM, Hart CM, Parthasarathy S: Oxidized low density lipoprotein-mediated activation of phospholipase D in smooth muscle cells: A possible role in cell proliferation and atherogenesis. J Lipid Res 36: 2005–2016, 1995

    PubMed  Google Scholar 

  49. Natarajan V, Scribner WM, Vepa S: Phosphatase inhibitors potentiate 4-hydroxynonenal-induced phospholipase D activation in vascular endothelial cells. Am J Respir Cell Mol Biol 17: 251–259, 1997

    PubMed  Google Scholar 

  50. Natarajan V, Vepa S, Verma RS, Scribner WM: Role of protein tyrosine phosphorylation in H2O2-induced activation of endothelial cell phospholipase D. Am J Physiol Lung Cell Mol Physiol 271: L400–L408, 1996

    Google Scholar 

  51. Olson SC, Lambeth JD: Biochemistry and cell biology of phospholipase D in human neutrophils. Chem Phys Lipids 80: 3–19, 1996

    Article  PubMed  Google Scholar 

  52. Parinandi NL, Scribner WM, Vepa S, Shi S, Natarajan V: Phospholipase D activation in endothelial cells is redox sensitive. Antioxid Redox Signal 1: 193–210, 1999

    PubMed  Google Scholar 

  53. Martinson EA, Scheible S, Presek P: Inhibition of phospholipase D of human platelets by protein tyrosine kinase inhibitors. Cell Mol Biol 40: 627–634, 1994

    PubMed  Google Scholar 

  54. Liebenhoff U, Greinacher A, Presek P: The protein tyrosine kinase pp60c-src is activated upon platelet stimulation. Cell Mol Biol 40: 645–652, 1994

    PubMed  Google Scholar 

  55. Lin P, Fung SJ, Li S, Chen T, Repetto B, Huang KS, Gilfillan AM: Temporal regulation of the IgE-dependent 1,2-diacylglycerol production by tyrosine kinase activation in a rat (RBL 2H3) mast-cell line. Biochem J 299: 109–114, 1994

    PubMed  Google Scholar 

  56. Ushio-Fukai M, Alexander RW, Akers M, Lyons PR, Lassegue B, Griendling KK: Angiotensin II receptor coupling to phospholipase D is mediated by the β γsubunits of heterotrimeric G proteins in vascular smooth muscle cells. Mol Pharmacol 55: 142–149, 1999

    PubMed  Google Scholar 

  57. Khare S, Bissonnette M, Wali R, Skarosi S, Boss GR, von Lintig FC, Scaglione-Sewell B, Sitrin MD, Brasitus TA:1,25-dihydroxyvitamin D3 but not TPA activates PLD in Caco-2 cells via pp60(c-src) and RhoA. Am J Physiol 276: G1005–1015, 1999

    PubMed  Google Scholar 

  58. Mangoura D, Pelletiere C, Leung S, Sakellaridis N, Wang DX: Prolactin concurrently activates src-PLD and JAK/Stat signaling pathways to induce proliferation while promoting differentiation in embryonic astrocytes. Int J Dev Neurosci 18: 693–704, 2000

    PubMed  Google Scholar 

  59. Jinsi-Parimoo A, Deth RC: Reconstitution of α2D-adrenergic receptor coupling to phospholipase D in a PC12 cell lysate. J Biol Chem 272: 14556–14561, 1997

    Article  PubMed  Google Scholar 

  60. Rodina A, Schramm K, Musatkina E, Kreuser ED, Tavitian A, Tatosyan A: Phosphorylation of p125FAK and paxillin focal adhesion proteins in src-transformed cells with different metastatic capacity. FEBS Lett 455: 145–148, 1999

    PubMed  Google Scholar 

  61. Calalb MB, Zhang X, Polte TR, Hanks SK: Focal adhesion kinase tyrosine-861 is a major site of phosphorylation by Src. Biochem Biophys Res Commun 228: 662–668, 1996

    Article  PubMed  Google Scholar 

  62. Birukov KG, Csortos C, Marzilli L, Dudek S, Ma SF, Bresnick AR, Verin AD, Cotter RJ, Garcia JG: Differential regulation of alternatively spliced endothelial cell myosin light chain kinase isoforms by p60 (Src). J Biol Chem 276: 8567–8573, 2001

    PubMed  Google Scholar 

  63. Wu H, Parsons JT: Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 120: 1417–1426, 1993

    PubMed  Google Scholar 

  64. Houle MG, Bourgoin S: Regulation of phospholipase D by phosphorylation-dependent mechanisms. Biochim Biophys Acta 1439: 135–149, 1999

    PubMed  Google Scholar 

  65. Exton JH: Regulation of phospholipase D. Biochim Biophys Acta 1439: 21–33, 1999

    Google Scholar 

  66. Bechoua S, Daniel LW: Phospholipase D is required in the signaling pathway leading to p38 MAPK activation in neutrophil-like HL-60 cells, stimulated by N-formyl-methionyl-leucyl-phenylalanine. J Biol Chem 276: 31752–31759, 2001

    Article  PubMed  Google Scholar 

  67. Djerdjouri B, Lenoir M, Giroud JP, Perianin A: Contribution of mitogen-activated protein kinase to stimulation of phospholipase D by the chemotactic peptide fMet-Leu-Phe in human neutrophils. Biochem Biophys Res Commun 264: 371–375, 1999

    PubMed  Google Scholar 

  68. Ito Y, Nakashima S, Nozawa Y: Possible involvement of mitogen-activated protein kinase in phospholipase D activation induced by H2O2, but not by carbachol, in rat pheochromocytoma PC12 cells. J Neurochem 71: 2278–2285, 1998

    PubMed  Google Scholar 

  69. Muthalif MM, Parmentier JH, Benter IF, Karzoun N, Ahmed A, Khandekar Z, Adl MZ, Bourgoin S, Malik KU: Ras/mitogen-activated protein kinase mediates norepinephrine-induced phospholipase D activation in rabbit aortic smooth muscle cells by a phosphorylation-dependent mechanism. J Pharmacol Exp Ther 293: 268–274, 2000

    PubMed  Google Scholar 

  70. Jones LG, Ella KM, Bradshaw CD, Gause KC, Dey M, Wisehart-Johnson AE, Spivey EC, Meier KE: Activation of mitogen-activated protein kinases and phospholipase D in A7r5 vascular smooth muscle cells. J Biol Chem 269: 23790–23799, 1994

    PubMed  Google Scholar 

  71. Brown HA, Gutowski S, Moomaw CR, Slaughter C, Sternweis PC: ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 75: 1137–1144, 1993

    PubMed  Google Scholar 

  72. Cockcroft S: Phospholipase D: Regulation by GTPases and protein kinase C and physiological relevance. Prog Lipid Res 35: 345–370, 1996

    Article  PubMed  Google Scholar 

  73. Wakelam MJ, Hodgkin MN, Martin A, Saqib K: Phospholipase D. Semin Cell Dev Biol 8: 305–310, 1997

    PubMed  Google Scholar 

  74. Chalifour R, Kanfer JN: Fatty acid activation and temperature perturbation of rat brain microsomal phospholipase D. J Neurochem 39: 299–305, 1982

    PubMed  Google Scholar 

  75. Chai MQ, Chen JS, Zhao S, Song JG: Propranolol increases phosphatidic acid level via activation of phospholipase D. Acta Pharmacol Sin 22: 777–784, 2001

    PubMed  Google Scholar 

  76. McPhail LC, Waite KA, Regier DS, Nixon JB, Qualliotine-Mann D, Zhang WX, Wallin R, Sergeant S: A novel protein kinase target for the lipid second messenger phosphatidic acid. Biochim Biophys Acta 1439: 277–290, 1999

    PubMed  Google Scholar 

  77. Sozzani S, Agwu DE, Ellenburg MD, Locati M, Rieppi M, Rojas A, Mantovani A, McPhail LC: Activation of phospholipase D by interleukin-8 in human neutrophils. Blood 84: 3895–3901, 1994

    PubMed  Google Scholar 

  78. Park JW: Phosphatidic acid-induced translocation of cytosolic components in a cell-free system of NADPH oxidase: Mechanism of activation and effect of diacylglycerol. Biochem Biophys Res Commun 229: 758–763, 1996

    Article  PubMed  Google Scholar 

  79. Torres M, Forman HJ: Activation of several MAP kinases upon stimulation of rat alveolar macrophages: Role of the NADPH oxidase. Arch Biochem Biophys 366: 231–239, 1999

    PubMed  Google Scholar 

  80. Yamamori T, Inanami O, Nagahata H, Cui Y, Kuwabara M: Roles of p38 MAPK, PKC and PI3-K in the signaling pathways of NADPH oxidase activation and phagocytosis in bovine polymorphonuclear leukocytes. FEBS Lett 467: 253–258, 2000

    Article  PubMed  Google Scholar 

  81. Erickson RW, Langel-Peveri P, Traynor-Kaplan AE, Heyworth PG, Curnutte JT: Activation of human neutrophil NADPH oxidase by phosphatidic acid or diacylglycerol in a cell-free system. Activity of diacylglycerol is dependent on its conversion to phosphatidic acid. J Biol Chem 274: 22243–22250, 1999

    PubMed  Google Scholar 

  82. Regier DS, Waite KA, Wallin R, McPhail LC: A phosphatidic acid-activated protein kinase and conventional protein kinase C isoforms phosphorylate p22(phox), an NADPH oxidase component. J Biol Chem 274: 36601–36608, 1999

    PubMed  Google Scholar 

  83. Regier DS, Greene DG, Sergeant S, Jesaitis AJ, McPhail LC: Phosphorylation of p22phox is mediated by phospholipase D-dependent and-independent mechanisms. Correlation of NADPH oxidase activity and p22phox phosphorylation. J Biol Chem 275: 28406–28412, 2000

    PubMed  Google Scholar 

  84. Bouin AP, Grandvaux N, Vignais PV, Fuchs A: p40(phox) is phosphorylated on threonine 154 and serine 315 during activation of the phagocyte NADPH oxidase. Implication of a protein kinase c-type kinase in the phosphorylation process. J Biol Chem 273: 30097–30103, 1998

    Article  PubMed  Google Scholar 

  85. El Benna J, Faust LP, Babior BM: The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by prolinedirected kinases. J Biol Chem 269: 23431–23436, 1994

    PubMed  Google Scholar 

  86. Limatola C, Schaap D, Moolenaar WH, van Blitterswijk WJ: Phosphatidic acid activation of protein kinase C-ζ overexpressed in COS cells: Comparison with other protein kinase C isotypes and other acidic lipids. Biochem J 304: 1001–1008, 1994

    PubMed  Google Scholar 

  87. Reich R, Blumenthal M, Liscovitch M: Role of phospholipase D in laminin-induced production of gelatinase A (MMP-2) in metastatic cells. Clin Exp Metastasis 13: 134–140, 1995

    PubMed  Google Scholar 

  88. Williger BT, Reich R, Neeman M, Bercovici T, Liscovitch M: Release of gelatinase A (matrix metalloproteinase 2) induced by photolysis of caged phosphatidic acid in HT 1080 metastatic fibrosarcoma cells. J Biol Chem 270: 29656–29659, 1995

    PubMed  Google Scholar 

  89. Williger BT, Ho WT, Exton JH: Phospholipase D mediates matrix metalloproteinase-9 secretion in phorbol ester-stimulated human fibrosarcoma cells. J Biol Chem 274: 735–738, 1999

    Article  PubMed  Google Scholar 

  90. Cummings RJ, Parinandi NL, Zaiman A, Wang L, Garcia JGN, Natarajan V: Phospholipase D activation by sphingosine-1-phosphate regulates interleukin-8 secretion in human bronchial epi thelial cells. J Biol Chem 2002 (in press)

  91. Rizzo MA, Shome K, Vasudevan C, Stolz DB, Sung TC, Frohman MA, Watkins SC, Romero G: Phospholipase D and its product, phosphatidic acid, mediate agonist-dependent raf-1 translocation to the plasma membrane and the activation of the mitogen-activated protein kinase pathway. J Biol Chem 274: 1131–1139, 1999

    Article  PubMed  Google Scholar 

  92. Parinandi NL, Cummings R, Spannhake WE, Natarajan V: Role of phosphatidic acid in urban particulate matter-induced interleukin-8 secretion in bronchial epithelial cells. Am J Respir Crit Care Med 163: A361, 2001

    Google Scholar 

  93. Shi S, Garcia JG, Roy S, Parinandi NL, Natarajan V: Involvement of c-Src in diperoxovanadate-induced endothelial cell barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 279: L441–451, 2000

    PubMed  Google Scholar 

  94. English D, Cui Y, Siddiqui R, Patterson C, Natarajan V, Brindley DN, Garcia JG: Induction of endothelial monolayer permeability by phosphatidate. J Cell Biochem 75: 105–117, 1999

    Article  PubMed  Google Scholar 

  95. Parinandi N, Shi S, Roy S, Usatyuk P, Pennathur A, Yang J, Travers JB, Morris A, Garcia JGN, Natarajan V: Disruption of endothelial cell barrier function through agonist-induced activation of Phospholipase D and phosphatidic acid-dependent signal transduction. FASEB J 15: A18, 2001

    Google Scholar 

  96. Garcia JG, Schaphorst KL: Regulation of endothelial cell gap formation and paracellular permeability. J Investig Med 43: 117–126, 1995

    PubMed  Google Scholar 

  97. Cross MJ, Roberts S, Ridley AJ, Hodgkin MN, Stewart A, Claesson-Welsh L, Wakelam MJ: Stimulation of actin stress fibre formation mediated by activation of phospholipase D. Curr Biol 6: 588–597, 1996

    Article  PubMed  Google Scholar 

  98. Jenkins GH, Fisette PL, Anderson RA: Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J Biol Chem 269: 11547–11554, 1994

    PubMed  Google Scholar 

  99. Divecha N, Roefs M, Halstead JR, D'Andrea S, Fernandez-Borga M, Oomen L, Saqib KM, Wakelam MJ, D'santos C: Interaction of the type Ialpha PIPkinase with phospholipase D: A role for the local generation of phosphatidylinositol 4, 5-bisphosphate in the regulation of PLD2 activity. EMBO J 19: 5440–5449, 2000

    PubMed  Google Scholar 

  100. Williger BT, Ho WT, Exton JH: Phospholipase D mediates matrix metalloproteinase-9 secretion in phorbol ester-stimulated human fibrosarcoma cells. J Biol Chem 274: 735–738, 1999

    Article  PubMed  Google Scholar 

  101. Asp L, Claesson C, Boren J, Olofsson SO: ADP-ribosylation factor 1 and its activation of phospholipase D are important for the assembly of very low density lipoproteins. J Biol Chem 275: 26285–26292, 2000

    Article  PubMed  Google Scholar 

  102. Emoto M, Klarlund JK, Waters SB, Hu V, Buxton JM, Chawla A, Czech MP: A role for phospholipase D in GLUT4 glucose transporter translocation. J Biol Chem 275: 7144–7151, 2000

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cummings, R., Parinandi, N., Wang, L. et al. Phospholipase D/phosphatidic acid signal transduction: Role and physiological significance in lung. Mol Cell Biochem 234, 99–109 (2002). https://doi.org/10.1023/A:1015944828973

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015944828973

Navigation