Skip to main content
Log in

Nebulization of Liposomes. I. Effects of Lipid Composition

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

A series of multilamellar liposome dispersions was prepared from lipids of soy phosphatidylcholine or hydrogenated soy phosphatidylcholine containing from 0 to 30 mol% of either cholesterol, steary-lamine, or dipalmitoyl phosphatidylglycerol. The liposome dispersions were aerosolized with a Collison nebulizer for 80 min at an output flow rate of 4.7 liters of air/min. The effects of nebulization on the vesicles were determined by monitoring the release of encapsulated 5,6-carboxyfluorescein (CF) from dispersions containing ≈200 µg of total CF, of which 93.1 ± 2.4% (N = 18) was initially encapsulated. In all experiments CF was released from the liposomes while being aerosolized, and this ranged from a mean of 12.7 ± 3.8 to 60.9 ± 1.9% of the encapsulated CF, depending upon the lipid composition. The lipid concentration in the dispersions did not affect the rate or percentage release of CF over a range of ≈0.5 to 50 mg per nebulized dispersion. If liposomes are to be used as drug carriers in an inhalation aerosol a lipid composition should be employed which will minimize the release of encapsulated drug caused by nebulization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. P. Newman. Chest 88:152s–160s (1985).

    Google Scholar 

  2. G. K. Crompton. Eur. J. Resp. Dis. 63:101–104 (Suppl. 119) (1982).

    Google Scholar 

  3. K. Agarwal, A. Bali, and C. M. Gupta. Biochim. Biophys. Acta 856:36–40 (1986).

    Google Scholar 

  4. F. Szoka, Jr., and D. Papahadjopoulos. Annu. Rev. Biophys. Bioeng. 9:467–508 (1980).

    Google Scholar 

  5. G. Strauss and H. Hauser. Proc. Natl. Acad. Sci. 83:2422–2426 (1986).

    Google Scholar 

  6. L. M. Crowe, J. H. Crowe, A. Rudolph, C. Womersley, and L. Appel. Arch. Biochem. Biophys. 242:240–247 (1985).

    Google Scholar 

  7. A. Jobe and M. Ikegami. Am. Rev. Resp. Dis. 136:1256–1275 (1987).

    Google Scholar 

  8. H. N. McCullough and R. L. Juliano. J. Nucl. Cancer Inst. 63:727–731 (1979).

    Google Scholar 

  9. R. L. Juliano and H. N. McCullough. J. Pharmacol. Exp. Ther. 214:381–387 (1980).

    Google Scholar 

  10. S. J. Farr, I. W. Kellaway, D. R. Parry-Jones, and S. G. Woolfrey. Int. J. Pharm. 26:303–316 (1985).

    Google Scholar 

  11. K. M. G. Taylor, G. Taylor, I. W. Kellaway, and J. Stevens. Pharm. Res. 6:633–636 (1989).

    Google Scholar 

  12. R. J. Debs, R. M. Straubinger, E. N. Brunette, J. M. Lin, E. J. Lin, A. B. Montgomery, D. S. Friend, and D. P. Papahadjopoulos. Am. Rev. Resp. Dis. 135:731–737 (1987).

    Google Scholar 

  13. B. E. Gilbert, H. R. Six, S. Z. Wilson, P. R. Wyde, and V. Knight. Antivir. Res. 9:355–365 (1988).

    Google Scholar 

  14. P. R. Wyde, H. R. Six, S. Z. Wilson, B. E. Gilbert, and V. Knight. Antimicrob. Agents Chemother. 32:890–895 (1988).

    Google Scholar 

  15. P. J. Mihalko, H. Schreier, and R. M. Abra. In G. Gregoriadis, (ed.), Liposomes as Drug Carriers, J. Wiley & Sons, London 1988, pp. 679–694.

    Google Scholar 

  16. A. Pettenazzo, A. Jobe, M. Ikegami, R. Abra, E. Hogue, and P. Mihalko. Am. Rev. Resp. Dis. 139:752–758 (1989).

    Google Scholar 

  17. R. V. Padmanabhan, R. Gudapaty, I. E. Liener, B. A. Schwartz, and J. R. Hoidal. Am. Rev. Resp. Dis. 132:164–167 (1985).

    Google Scholar 

  18. E. Ralston, L. M. Hjelmeland, R. D. Klausner, J. N. Weinstein, and R. Blumenthal. Biochim. Biophys. Acta 649:133–137 (1981).

    Google Scholar 

  19. F. Olson, C. A. Hunt, F. C. Szoka, W. J. Vail, and D. Papahadjopoulos. Biochim. Biophys. Acta 557:9–23 (1979).

    Google Scholar 

  20. M. Sila, S. Au, and N. Weiner. Biochim. Biophys. Acta 859:165–170 (1986).

    Google Scholar 

  21. M. A. Urbaneja, J. L. Nieva, F. M. Goñi, and A. Alonso. Biochim. Biophys. Acta 904:337–345 (1987).

    Google Scholar 

  22. E. G. Bligh and W. J. Dyer. Can. J. Biochem. Phys. 37:911–917 (1959).

    Google Scholar 

  23. G. Rouser, S. Fleischer, and A. Yamamoto. Lipids 5:494–496 (1970).

    Google Scholar 

  24. K. R. May. Aerosol Sci. 4:235–243 (1973).

    Google Scholar 

  25. J. De Gier, J. G. Mandersloot, and L. L. M. VanDeenen. Biochim. Biophys. Acta. 150:666–675 (1965).

    Google Scholar 

  26. S. M. Johnson. Biochim. Biophys. Acta 307:27–41 (1989).

    Google Scholar 

  27. W. Curatolo, B. Sears, and L. J. Neuringer. Biochim. Biophys. Acta 817:261–270 (1985).

    Google Scholar 

  28. E. Mayhew, M. Ito, and R. Lazo. Exp. Cell. Res. 171:195–202 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niven, R.W., Schreier, H. Nebulization of Liposomes. I. Effects of Lipid Composition. Pharm Res 7, 1127–1133 (1990). https://doi.org/10.1023/A:1015924124180

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015924124180

Navigation