Skip to main content
Log in

Hydrogels: Swelling, Drug Loading, and Release

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. The desired kinetics, duration, and rate of solute release from hydrogels are limited to specific conditions, such as hydrogel properties, amount of incorporated drug, drug solubility, and drug–polymer interactions. This review summarizes the compositional and structural effects of polymers on swelling, loading, and release and approaches to characterize solute release behavior in a dynamic state. A new approach is introduced to compensate drug effects (solubility and loading) with the release kinetics by varying the structure of heterogeneous polymers. Modulated or pulsatile drug delivery using functional hydrogels is a recent trend in hydrogel drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. W. Kim, R. V. Pertersen, and J. Feijen. In J. Ariens (ed.), Drug Design, Academic Press, New York, 1980, pp. 193–250.

    Google Scholar 

  2. S. W. Kim. In C. G. Gebelein and C. E. Carraher (eds.), Bioactive Polymer Systems, Plenum, New York, 1985, pp. 143–150.

    Google Scholar 

  3. S. Z. Song, S. H. Kim, J. R. Cardinal, and S. W. Kim. Progestin permeation through polymer membranes. V. Progesterone release from monolithic hydrogel devices. J. Pharm. Sci. 70:216–219 (1981).

    Google Scholar 

  4. P. J. Flory. Principles of Polymer Chemistry, Cornell University Press, Ithaca, N.Y., 1953.

    Google Scholar 

  5. S. Wisniewski and S. W. Kim. Permeation of water-soluble solutes through poly(2-hydroxyethyl methacrylate) and poly(2-hydroxyethyl methacrylate) crosslinked with ethylene glycol dimethacrylate. J. Membr. Sci. 6:299–308 (1980).

    Google Scholar 

  6. S. Sato and S. W. Kim. Macromolecular diffusion through polymer membranes. Int. J. Pharm. 22:229–255 (1984).

    Google Scholar 

  7. K. Sharma, K. Knutson, and S. W. Kim. Effect of block copolyurethane morphology on drug release from monolithic devices. Trans. Soc. Biomater. 8:95 (1985).

    Google Scholar 

  8. W. R. Good and K. F. Mueller. In S. K. Chandrasekaran (ed.), Controlled Release Systems, AIChE Symp. Series, Vol. 77, No. 206, 1981, pp. 42–51.

  9. W. R. Good. In R. J. Kostelnik (ed.), Polymeric Delivery Systems, Gordon and Breach, 1978, pp. 139–156.

  10. P. I. Lee. Drug release from initially dry hydrogel. Int. Symp. Control. Rel. Bioact. Mater. 9:54–66 (1982).

    Google Scholar 

  11. P. I. Lee. Kinetics of drug release from hydrogel matrices. J. Control. Release 2:277 (1985).

    Google Scholar 

  12. J. S. Vrentas, C. M. Jarzebski, and J. D. Duda. A deborah number for diffusion in polymer-solvent systems. AIChE J. 21:894–901 (1975).

    Google Scholar 

  13. R. W. Korsmeyer and N. A. Peppas. Effect of the morphology of hydrophylic polymeric matrices on the diffusion and release of water soluble drugs. J. Membr. Sci. 9:211–227 (1981).

    Google Scholar 

  14. R. W. Korsmeyer and N. A. Peppas. Solute and penetrant diffusion in swellable polymers. III. Drug release from glassy poly-(HEMA-co-NVP) copolymers. J. Control. Release 1:89–98 (1984).

    Google Scholar 

  15. J. H. Kou, D. Fleisher, and G. L. Amidon. Modelling drug release from dynamically swelling poly(hydroxyl methacrylate-co-methacrylic acid) hydrogels. J. Control. Release 12:241 (1990).

    Google Scholar 

  16. E. S. Lee, S. W. Kim, J. R. Cardinal, and H. Jacobs. Drug release from hydrogel devices with rate controlling barriers. J. Membr. Sci. 7:293–303 (1980).

    Google Scholar 

  17. T. J. Roseman and W. I. Higuchi. Release of medroxy progesterone acetate from a silicone polymer. J. Pharm. Sci. 59:353–357 (1970).

    Google Scholar 

  18. Y. H. Bae, T. Okano, and S. W. Kim. Insulin permeation through thermo-sensitive hydrogels. J. Control. Release 9:271–279 (1989).

    Google Scholar 

  19. Y. H. Bae, T. Okano, C. Ebert, S. Heiber, S. Dave, and S. W. Kim. Heterogeneous interpenetrating networks for drug delivery. J. Control. Release 16:189–196 (1991).

    Google Scholar 

  20. A. S. Hoffman, K. P. Antonsen, J. B. Bohnert, L. C. Dong, Y. Nabeshima, X. S. Wu, and Q. Yan. Delivery of protein drugs from macroporous hydrogels. Presented at the Fifth International Symposium on Recent Advances in Drug Delivery Systems, Salt Lake City, Utah, Feb. 25–28, 1991.

  21. A. S. Hoffman, A. Afrassiabi, and L. C. Dong. Thermally reversible hydrogels. II. Delivery and selective removal of substances from aqueous solutions. J. Control. Release 4:213–222 (1986).

    Google Scholar 

  22. Y. H. Bae, T. Okano, and S. W. Kim. Thermo-sensitive polymers as on-off switches for drug release. Makromol. Chem. Rapid. Commun. 8:481–485 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.W., Bae, Y.H. & Okano, T. Hydrogels: Swelling, Drug Loading, and Release. Pharm Res 9, 283–290 (1992). https://doi.org/10.1023/A:1015887213431

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015887213431

Navigation