Skip to main content
Log in

Chemical Stability of Insulin. 2. Formation of Higher Molecular Weight Transformation Products During Storage of Pharmaceutical Preparations

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Formation of covalent, higher molecular weight transformation (HMWT) products during storage of insulin preparations at 4–45°C was studied by size exclusion chromatography. The main products are covalent insulin dimers (CID), but in protamine-containing preparations the concurrent formation of covalent insulin-protamine (CIP) products takes place. At temperatures ≥25°C parallel or consecutive formation of covalent oligo- and polymers can also be observed. Rate of HMWT is only slightly influenced by species of insulin but varies with composition and formulation, and for isophane (NPH) preparations, also with the strength of preparation. Temperature has a pronounced effect on CID, CIP, and, especially, covalent oligo- and polymer formation. The CIDs are apparently formed between molecules within the hexameric unit common for all types of preparations and rate of formation is generally faster in glycerol-containing preparations. Compared with insulin hydrolysis reactions (see the preceding paper), HMWT is one order of magnitude slower, except for NPH preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Brange, L. Langkjær, S. Havelund, and A. Vølund. Chemical stability of insulin. 1. Hydrolytic degradation during storage of pharmaceutical preparations. Pharm Res. 9:715–726 (1992).

    Google Scholar 

  2. J. Schlichtkrull, M. Pingel, L. G. Heding, J. Brange, and K. H. Jørgensen. Insulin preparations with prolonged effect. In A. Hasselblatt and F. von Bruchhausen (eds.), Handbook of Experimental Pharmacology, New Series, Vol. XXXII/2, Springer-Verlag, Berlin, Heidelberg, New York, 1975, pp. 729–777.

    Google Scholar 

  3. J. Brange, L. Langkjær, S. Havelund, and E. Sørensen. Chemical stability of insulin: Neutral insulin solutions. Diabetologia 25:193 (1983) (abstr).

    Google Scholar 

  4. J. Brange, L. Langkjær, S. Havelund, and E. Sørensen. Chemical stability of insulin: Formation of covalent insulin dimers and other higher molecular weight transformation products in intermediate-and long-acting insulin preparations. Diabetologia 27:259A–260A (1984) (abstr).

    Google Scholar 

  5. J. Brange, B. Skelbaek-Pedersen, L. Langkjaer, U. Damgaard, H. Ege, S. Havelund, L. G. Heding, K. H. Jørgensen, J. Lykkeberg, J. Markussen, M. Pingel, and E. Rasmussen. Galenics of Insulin: The Physico-chemical and Pharmaceutical Aspects of Insulin and Insulin Preparations, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1987.

    Google Scholar 

  6. D. F. Steiner, O. Hallund, A. Rubenstein, S. Cho, and C. Bayliss. Isolation and properties of proinsulin, intermediate forms, and other minor components from crystalline bovine insulin. Diabetes 17:725–736 (1968).

    Google Scholar 

  7. D. F. Steiner. Proinsulin and the biosynthesis of insulin. N. Engl. J. Med. 280:1106–1113 (1969).

    Google Scholar 

  8. H.-J. Helbig. Insulindimere aus der b-Komponente von Insulinpräparationen, Dissertation, Rheinish-Westfälishe Technische Hochschule, Aachen, 1976.

  9. T. R. Csorba, H. G. Gattner, and P. Cuatrecasas. Partial dimerization of insulin. Clin. Res. 20:918 (1972) (abstr).

    Google Scholar 

  10. J. Brange. Insulin transformation products formed during storage of insulin preparations: Isolation, characterization and properties (in preparation).

  11. J. Brange, D. R. Owens, S. Kang, and A. Vølund. Monomeric insulins and their experimental and clinical implications. Diabetes Care 13:923–954 (1990).

    Google Scholar 

  12. J. T. Carstensen. Drug Stability: Principles and Practices, Dekker, New York and Basel, 1990.

    Google Scholar 

  13. E. N. Baker, T. L. Blundell, J. F. Cutfield, S. M. Cutfield, E. J. Dodson, G. G. Dodson, D. M. C. Hodgkin, R. E. Hubbard, N. W. Isaacs, C. D. Reynolds, K. Sakabe, N. Sakabe, and N. M. Vijayan. The structure of 2Zn pig insulin crystals at 1.5 Å resolution. Phil. Trans. R. Soc. 319:369–456 (1988).

    Google Scholar 

  14. J. F. Back, D. Oakenfull, and M. B. Smith. Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry 18:5191–5196 (1979).

    Google Scholar 

  15. K. Gekko and S. N. Timasheff. Mechanism of protein stabilization by glycerol: Preferential hydration in glycerol-water mixtures. Biochemistry 20:4667–4676 (1981).

    Google Scholar 

  16. U. Derewenda, Z. Derewenda, E. J. Dodson, G. G. Dodson, C. D. Reynolds, G. D. Smith, C. Sparks, and D. Swenson. Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature 338:594–596 (1989).

    Google Scholar 

  17. J. Brange, S. Havelund, P. Hansen, L. Langkjær, E. Sørensen, and P. Hildebrandt. Formulation of physically stable neutral solutions for continuous infusion by delivery systems. In J. L. Gueriguian, E. D. Bransome, and A. S. Outschoorn (eds.), Hormone Drugs, US Pharmacopoeial Convention, Rockville, MD, 1982, pp. 96–105.

    Google Scholar 

  18. A. S. Acharya and J. M. Manning. Reaction of glycolaldehyde with proteins: Latent crosslinking potential of α-hydroxyaldehydes. Proc. Natl. Acad. Sci. USA 80:3590–3594 (1983).

    Google Scholar 

  19. J. Bello and H. R. Bello. Chemical modification and crosslinking of proteins by impurities in glycerol. Arch. Biochem. Biophys. 172:608–610 (1976).

    Google Scholar 

  20. M. C. Manning, K. Patel, and R. T. Borchardt. Stability of protein pharmaceuticals. Pharm. Res. 6:903–918 (1989).

    Google Scholar 

  21. D. C. Robbins, S. M. Cooper, S. E. Fineberg, and P. M. Mead. Antibodies to covalent aggregates of insulin in blood of insulin-using diabetic patients. Diabetes 36:838–841 (1987).

    Google Scholar 

  22. M. Maislos, P. M. Mead, D. H. Gaynor, and D. C. Robbins. The source of the circulating aggregate of insulin in type I diabetic patients is therapeutic insulin. J. Clin. Invest. 77:717–723 (1986).

    Google Scholar 

  23. R. E. Ratner, T. M. Phillips, and M. Steiner. Persistent cutaneous insulin allergy resulting from high-molecular-weight insulin aggregates. Diabetes 39:728–733 (1990).

    Google Scholar 

  24. L. J. Nell and J. W. Thomas. Frequency and specificity of protamine antibodies in diabetic and control subjects. Diabetes 37:172–176 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom correspondence should be addressed at Nove Research Institute, Novo Alle, DK-2880Bagsvaerd, Denmark

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brange, J., Havelund, S. & Hougaard, P. Chemical Stability of Insulin. 2. Formation of Higher Molecular Weight Transformation Products During Storage of Pharmaceutical Preparations. Pharm Res 9, 727–734 (1992). https://doi.org/10.1023/A:1015887001987

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015887001987

Navigation