Skip to main content
Log in

Percolation Theory and Compactibility of Binary Powder Systems

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Defined size fractions of polyethyleneglycol powder (MW = 10,000) were mixed with defined size fractions of α-lactose monohydrate in order to study the effect of compaction as a function of the weight ratios of the two excipients. For a precise control of the compression cycle, tablets were compressed on a Universal Testing Machine (Zwick 1478). Tablet tensile strength σT was quantified as a function of compressional stress σc and relative density ρr using a two-parameter model with σTmax = maximal tensile strength at zero porosity and γ = compressibility. The results have been analyzed on the basis of the percolation theory. As soon as the component with the lower mechanical stability is percolating the powder system, tablet hardness is controlled entirely by this component. The percolation threshold is a function of the geometrical arrangement of the particles in the compressed powder system. The expected two percolation thresholds can be distinguished as a function of the composition weight ratios if the particle size distributions of the two components differ enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Stauffer. Introduction to Percolation Theory, Taylor & Francis, London and Philadelphia, 1985.

    Google Scholar 

  2. W. O. Smith, P. D. Foote, and P. F. Busang, Phys. Rev. 34:1272 (1929).

    Google Scholar 

  3. G. Bockstiegel and J. Hewing. Arch. Eisenhüttenwes. 36:1–17 (1965).

    Google Scholar 

  4. K.-H. Lüdde and K. Kawakita. Pharmazie 21:393–403 (1966).

    Google Scholar 

  5. T. R. R. Kurup and N. Pilpel. Powder Technol. 19:147–155 (1978).

    Google Scholar 

  6. A. Burger, R. Ramberger, and W. Schmidt. Pharmazie 36:41–46 (1981).

    Google Scholar 

  7. E. N. Hiestand and D. P. Smith. Powder Technol. 38:145–159 (1984).

    Google Scholar 

  8. H. Leuenberger and W. Jetzer. Powder Technol. 37:209–218 (1984).

    Google Scholar 

  9. H. Leuenberger. Int. J. Pharm. 12:41–47 (1982).

    Google Scholar 

  10. H. Leuenberger, E. N. Hiestand, and H. Sucker. Chem. Ing. Tech. 53:45 (1981).

    Google Scholar 

  11. H. Leuenberger and B. D. Rohera. Pharm. Res. 3:12–22 (1986).

    Google Scholar 

  12. H. Leuenberger. Proc. Pharm. Tech. Conf. 86, Hyatt, Cherry Hill, N.J., Sept. 16–18 (1986), pp. 180–195.

    Google Scholar 

  13. H. Leuenberger, B. D. Rohera, and Ch. Haas. Int. J. Pharm. 38:109–115 (1987).

    Google Scholar 

  14. W. Jetzer. Verpressbarkeit und Kompressibilität von pharmazeutischen Wirk-und Hilfsstoffen unter Berücksichtigung binärer Mischungen, Dissertation, Basel, 1982.

  15. B. Galli. Ueber die Härte pharmazeutischer Presslinge und deren Voraussage am Beispiel von ternär-und mehrkomponenten Systemen, Dissertation, Basel, 1985.

  16. B. D. Rohera. Compression Kinetic Study of Pharmaceutical Powder Systems, Thesis, Basel, 1984.

  17. D. Blattner. Untersuchungen über das Komprimierverhalten binärer pulverförmiger Haufwerke, Dissertation, Basel, 1987.

  18. J. T. Fell and J. M. Newton. J. Pharm. Pharmacol. 22:247–248 (1970).

    Google Scholar 

  19. M. Sheikh-Salem and J. T. Fell. Int. J. Pharm. Technol. Prod. Manuf. 2:19 (1981).

    Google Scholar 

  20. P. York and N. Pilpel. J. Pharm. Pharmacol. 25 (Suppl):1P–11P (1973).

    Google Scholar 

  21. R. W. Heckel. Trans. AIME 221:1001–1008 (1961).

    Google Scholar 

  22. A. R. Cooper and L. E. Eaton. J. Am. Ceram. Soc. 45:97–101 (1972).

    Google Scholar 

  23. P. C. Schmidt. Acta Pharm. Technol. 30 (4):302–311 (1984).

    Google Scholar 

  24. H. Vromans, A. H. de Boer, G. K. Bolhuis, and C. F. Lerk. Acta Pharm. Suec. 22:163–172 (1985).

    Google Scholar 

  25. H. Vromans, A. H. de Boer, G. K. Bolhuis, C. F. Lerk, K. D. Kussendrager, and H. Bosch. Pharm. Weekbl. Sci. 7:186–193 (1985).

    Google Scholar 

  26. A. H. de Boer, H. Vromans, C. F. Lerk, G. K. Bolhuis, K. D. Kussendrager, and H. Bosch. Pharm. Weekbl. Sci. 8:145–150 (1986).

    Google Scholar 

  27. H. V. van Kamp, G. K. Bolhuis, K. D. Kussendrager, and C. F. Lerk. Int. J. Pharm. 28:229–238 (1986).

    Google Scholar 

  28. A. A. Al-Angari, J. W. Kennerley, and J. M. Newton. J. Pharm. Pharmacol. 37:151–153 (1985).

    Google Scholar 

  29. J. T. Fell and J. M. Newton. J. Pharm. Sci. 60:1866–1869 (1971).

    Google Scholar 

  30. C. Führer. Acta Pharm. Technol. 12:143–153 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blattner, D., Kolb, M. & Leuenberger, H. Percolation Theory and Compactibility of Binary Powder Systems. Pharm Res 7, 113–117 (1990). https://doi.org/10.1023/A:1015864415693

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015864415693

Navigation