Skip to main content
Log in

Cyclodextrins as Nasal Absorption Promoters of Insulin: Mechanistic Evaluations

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The safety and effectiveness of cyclodextrins (CD) as nasal absorption promoters of peptide-like macromolecules have been investigated. The relative effectiveness of the cyclodextrins in enhancing insulin nasal absorption was found to be in the descending order of dimethyl-β-cyclodextrin (DMβCD) > α-cyclodextrin (α-CD) > β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HPβCD) > γ-cyclodextrin (γ-CD). A direct relationship linking absorption promotion to nasal membrane protein release is evident, which in turn correlates well with nasal membrane phospholipid release. The magnitude of the membrane damaging effects determined by the membrane protein or phospholipid release may provide an accurate, simple, and useful marker for predicting safety of the absorption enhancers. In order to estimate further the magnitude of damage and specificity of cyclodextrin derivatives in solubilizing nasal membrane components, the enzymatic activities of membrane-bound 5′-nucleotidase (5′-ND) and intracellular lactate dehydrogenase (LDH) in the perfusates were also measured. HPβCD at a 5% concentration was found to result in only minimal removal of epithelial membrane proteins as evidenced by a slight increase in 5′-ND and total absence of LDH activity. On the other hand, 5% DMβCD caused extensive removal of the membrane-bound 5′-ND. Moreover, intracellular LDH activity in the perfusate increased almost linearly with time. The cyclodextrins are also capable of dissociating insulin hexamers into smaller aggregates, and this dissociation depends on cyclodextrin structure and concentration. Enhancement of insulin diffusivity across nasal membrane through dissociation may provide an additional mechanism for cyclodextrin promotion of nasal insulin absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. W. Chien, K. S. E. Su, and S. F. Chang. Nasal Systemic Drug Delivery, Marcel Dekker, New York, 1989.

    Google Scholar 

  2. P. Tengamnuay and A. K. Mitra. Bile salt-fatty acid mixed micelles as nasal absorption promoters of peptides. II. In vivo nasal absorption of insulin in rats and effects of mixed micelles on the morphological integrity of the nasal mucosa. Pharm. Res. 7:370–375 (1990).

    MATH  Google Scholar 

  3. M. Hashimoto, K. Takada, Y. Kiso, and S. Muranishi. Synthesis of palmitoyl derivatives of insulin and their biological activities. Pharm. Res. 6:171–176 (1989).

    Google Scholar 

  4. S. Sato, C. D. Ebert, and S. W. Kim. Prevention of insulin self-association and surface adsorption. J. Pharm. Sci. 72:228–232 (1983).

    Google Scholar 

  5. R. Quinn and J. D. Andrade. Minimizing the aggregation of neutral insulin solution. J. Pharm. Sci. 72:1472–1483 (1983).

    Google Scholar 

  6. F.-y. Liu, D. O. Kildsig, and A. K. Mitra. Insulin aggregation in aqueous media and its effect on alpha-chymotrypsin-mediated proteolytic degradation. Pharm. Res. 8:925–929 (1991).

    Google Scholar 

  7. Y. Li, Z. Shao, and A. K. Mitra. Dissociation of insulin oligomers by bile salt micelles and its effect on alpha-chymotrpsin-mediated proteolytic degradation. Pharm. Res. 9:864–869 (1992).

    Google Scholar 

  8. S. Harai, T. Yashiki, and H. Mima. Effects of surfactants on the absorption of insulin in rats. Int. J. Pharm. 9:165–172 (1981).

    Google Scholar 

  9. G. S. Gordon, A. C. Moses, R. D. Silver, J. S. Flier, and M. C. Carey. Nasal absorption of insulin: Enhancement by hydrophobic bile salts. Proc. Natl. Acad. Sci. USA 82:7419–7423 (1983).

    Google Scholar 

  10. J. P. Longenecker, A. C. Moses, J. S. Flier, R. D. Silver, M. C. Carey, and E. J. Dubovi. Effects of sodium taurodihy-drofusidate on nasal absorption of insulin in sheep. J. Pharm. Sci. 76:351–355 (1987).

    Google Scholar 

  11. M. J. M. Deurloo, W. A. J. J. Hermens, S. G. Romeyn, J. C. Verhoef, and F. W. H. M. Merkus. Absorption enhancement of intranasally administered insulin by sodium taurodihydrofusidate (STDHF) in rabbits and rats. Pharm. Res. 6:853–856 (1989).

    Google Scholar 

  12. P. A. Baldwin, C. K. Klingbeil, C. J. Grimm, and J. P. Longenecker. The effect of sodium tauro-24, 25-dihydrofusidate on the nasal absorption of human growth hormone in three animal models. Pharm. Res. 7:547–552 (1990).

    Google Scholar 

  13. M. Mishima, Y. Wakita, and M. Nakano. Studies on the promoting effects of medium chain fatty acid salts on the nasal absorption of insulin in rats. J. Pharmacobio-Dyn. 10:624–631 (1987).

    Google Scholar 

  14. Z. Shao and A. K. Mitra. Nasal membrane and intracellular protein and enzyme release by bile salts and bile salt-fatty acid mixed micelles: Correlation with facilitated nasal drug transport. Pharm. Res. 9:1184–1189 (1992).

    Google Scholar 

  15. W. A. J. J. Hermens, P. M. Hooymans, J. C. Verhoef, and F. W. H. M. Merkus. Effects of absorption enhancers on human nasal tissue ciliary movement in vitro. Pharm. Res. 7:144–146 (1990).

    Google Scholar 

  16. M. D. Donovan, G. L. Flynn, and G. L. Amidon. The molecular weight dependence of nasal absorption: The effect of absorption enhancers. Pharm. Res. 7:808–815 (1990).

    Google Scholar 

  17. W. A. J. J. Hermens, M. J. M. Deurloo, S. G. Romeyn, J. C. Verhoef, and F. W. H. M. Merkus. Nasal absorption enhancement of 17β-estradiol by dimethyl-β-cyclodextrin in rabbits and rats. Pharm. Res. 7:500–503 (1990).

    Google Scholar 

  18. N. G. M. Schipper, W. A. J. J. Hermens, S. G. Romeyn, J. Verhoef, and F. W. H. M. Merkus. Nasal absorption of 17-beta-estradiol and progesterone from dimethyl-cyclodextrin inclusion formulation in rats. Int. J. Pharm. 64:61–66 (1990).

    Google Scholar 

  19. W. A. J. J. Hermens, C. W. J. Belder, J. M. W. M. Merkus, P. M. Hooymans, J. Verhoef, and F. W. H. M. Merkus. Intranasal estradiol administration to oophorectomized women. Eur. J. Obstet. Gynecol. Reprod. Biol. 40:35–41 (1991).

    Google Scholar 

  20. F. W. H. M. Merkus, J. C. Verhoef, S. G. Romeijn, and N. G. M. Schipper. Absorption enhancing effect of cyclodextrins on intranasally administered insulin in rats. Pharm. Res. 8:588–592 (1991).

    Google Scholar 

  21. A. Yoshida, H. Arima, K. Uekama, and J. Pitha. Pharmaceutical evaluation of hydroxyalkyl ethers of β-cyclodextrins. Int. J. Pharm. 46:217–222 (1988).

    Google Scholar 

  22. S. Hirai, T. Yashiki, and H. Mima. Absorption of drugs from the nasal mucosa of rat. Int. J. Pharm. 7:317–325 (1981).

    Google Scholar 

  23. C. H. Huang, R. Kimura, R. Bawarshi, and A. Hussain. Mechanism of nasal absorption of drugs I: Physicochemical parameters influencing the rate of in situ nasal absorption of drugs in rats. J. Pharm. Sci. 74:608–611 (1985).

    Google Scholar 

  24. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265–275 (1951).

    CAS  PubMed  Google Scholar 

  25. G. R. Bartlett. Phosphorus assay in column chromatography. J. Biol. Chem. 234:466–468 (1959).

    Google Scholar 

  26. S. Feldman, M. Reinhard, and C. Willson. Effect of sodium taurodeoxycholate on biological membranes: Release of phosphorus, phospholipid, and protein from everted rat small intestine. J. Pharm. Sci. 62:1961–1964 (1973).

    Google Scholar 

  27. D. B. Zilversmit and A. K. Davis. Microdetermination of plasma phospholipids by trichloroacetic acid precipitation. J. Lab. Clin. Med. 35:155–160 (1950).

    Google Scholar 

  28. C. L. M. Arkesteijn. A kinetic method for serum 5′-nucleotidase using stabilized glutamate dehydrogenase. J. Clin. Chem. Clin. Biochem. 14:155–158 (1976).

    Google Scholar 

  29. P. G. Cabaud and F. Wroblewski. Colorimetric measurement of lactic dehydrogenase activity of body fluids. Am. J. Pathol. 30:234 (1958).

    Google Scholar 

  30. J. Goldman and F. H. Carpenter. Zinc binding, circular dichroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. Biochemistry 13:4566–4574 (1974).

    Google Scholar 

  31. Y. Ohtani, T. Irie, K. Uekama, K. Fukunaga, and J. Pitha. Differential effects of α-, β-and γ-cyclodextrins on human erythrocytes. Eur. J. Biochem. 186:17–22 (1989).

    Google Scholar 

  32. K. Uekama and M. Otagiri. Cyclodextrins in drug carrier systems. CRC Crit. Rev. Ther. Drug. Carrier Syst. 3:1–40 (1987).

    Google Scholar 

  33. J. Szejtli. Cyclodextrins in drug formulations: Part I. Pharm. Tech. 8:36–44 (1991).

    Google Scholar 

  34. E. Mosekilde, K. S. Jensen, C. Binder, S. Pramming, and B. Thorsteinsson. Modeling absorption kinetics of subcutaneous injected soluble insulin. J. Pharmacokin. Biopharm. 17:67–87 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, Z., Krishnamoorthy, R. & Mitra, A.K. Cyclodextrins as Nasal Absorption Promoters of Insulin: Mechanistic Evaluations. Pharm Res 9, 1157–1163 (1992). https://doi.org/10.1023/A:1015847604654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015847604654

Navigation