Skip to main content
Log in

An Ab Initio Molecular Orbital Theory and Density Functional Theory (DFT) Study of Conformers and Rotamers of 4-Substituted (Methyl, Hydroxymethyl, Methanoyl, Ethanoyl, Cyano, Fluoro, Chloro, Bromo, Acetoxy) Tetrahydro-2H-thiopyran-1,1-dioxides

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The structures and energies of axial and equatorial conformers and rotamers of 4-substituted tetrahydro-2H-thiopyran-1,1-dioxides (tetrahydrothiopyran-1,1-dioxides, thiacyclohexane-1,1-dioxides, thiane-1,1-dioxides, and 1,1-dioxothianes; CH3, CH2OH, CHO, COCH3, CN, F, Cl, Br, and OCOCH3) were calculated using the hybrid density functionals B3LYP, B3P86, and B3PW91, as well as MP2 and the 6-31G(d), 6-31G(2d), 6-31G(3d), 6-31G(d,p), and 6-31+G(d) basis sets. MP2/6-31+G(d)/ /HF/6-31+G(d) [−ΔG° = 1.73 kcal/mol], B3P86/6-31G(d) [−ΔG° = 1.75 kcal/mol], and B3PW91/6-31G(d) [−ΔG° = 1.85 kcal/mol] gave conformational free energy (ΔG°) values at 180 K for 4-methyltetrahydro-2H-thiopyran-1,1-dioxide which were similar to the reported experimental values for methylcyclohexane (−ΔG° = 1.80 kcal/mol), 4-methyltetrahydro-2H-thiopyran (−ΔG° = 1.80 kcal/mol), and other 4-methyl-substituted heterocycles. All levels of theory showed that the conformational preferences of the 4-methanoyl (4-formyl), 4-ethanoyl (4-acetyl), and 4-cyano substituents were small. The HF calculations gave conformational free energy (ΔG°) values for 4-chlorotetrahydro-2H-thiopyran-1,1dioxide which were closer to the experimental value than the MP2 and density functional methods. The best agreement with available experimental data for 4-bromotetrahydro-2H-thiopyran-1,1-dioxide was obtained from the HF/6-31G(2d), HF/6-31G(3d), and B3LYP/6-31G(2d) calculations, and, for 4-acetoxytetrahydro-2H-thiopyran-1,1-dioxide, from the HF/6–31G(3d) calculations. The conformational free energies (ΔG°) and relative energies (ΔE) of the conformers and rotamers have been compared with the correspondingly substituted cyclohexanes and tetrahydro-2H-thiopyrans and are discussed in terms of dipole–dipole (electrostatic) interactions and repulsive nonbonded interactions (steric) in the most stable axial and equatorial conformers. The axial S=O bond lengths are shorter than the equatorial S=O bond lengths and the C2–C3 bond lengths in the substituents with carbon-bonded to the ring are shorter than the C3–C4 and C4–C-5 bond lengths. In contrast, the C2–C3 bond lengths in the 4-halogen and 4-acetoxy substituents are longer than the C3–C4 and C4–C-5 bond lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Eliel, E. L.; Wilen, S. H., Stereochemistry of Organic Compounds; Wiley: New York, 1994; Chapter 11.

    Google Scholar 

  2. Juaristi, E., Ed., Conformational Behavior of Six-Membered Rings; VCH: New York, 1995.

    Google Scholar 

  3. Bushweller, C. H., in Conformational Behavior of Six-Membered Rings; Juaristi, E., Ed.; VCH: New York, 1995; pp. 25-58.

    Google Scholar 

  4. Freeman, F.; Kasner, M. L.; Tsegai, Z. M.; Hehre, W. J., J. Chem. Ed. 2000, 77, 661.

    Google Scholar 

  5. Wiberg, K. B.; Hammer, J. D.; Castejon, H.; Bailey, W. F.; DeLeon, E. L.; Jarret, M., J. Org. Chem. 1999, 64, 2085.

    Google Scholar 

  6. Wiberg, K. B., J. Org. Chem. 1999, 64, 6387.

    Google Scholar 

  7. Winstein, S.; Holness, N. J., J. Amer. Chem. Soc. 1955, 77, 5562.

    Google Scholar 

  8. Freeman, F.; Kasner, M. L.; Hehre, W. J., J. Mol. Struct.(Theochem.) 1999, 487, 87.

    Google Scholar 

  9. Freeman, F.; Kasner, J. A.; Kasner, M. L.; Hehre, W. J., J. Mol. Struct.(Theochem.) 2000, 496, 19-39.

    Google Scholar 

  10. Freeman, F.; Phornvoranunt, A.; Hehre, W. J., J. Phys. Org. Chem. 1998, 11, 831.

    Google Scholar 

  11. Freeman, F.; Phornvoranunt, A.; Hehre, W. J., J. Phys. Org. Chem. 1999, 12, 176.

    Google Scholar 

  12. Freeman, F.; Phornvoranunt, A.; Hehre, W. J., J. Mol. Struct. (Theochem.) 1999, 492, 225.

    Google Scholar 

  13. Freeman, F.; Po, H. N.; Hehre, W. J., J. Mol. Struct.(Theochem.) 2000, 503, 145.

    Google Scholar 

  14. Freeman, F.; Asgari, N.; Hehre, W. J., J. Mol. Struct.(Theochem.), 2001, in press.

  15. Freeman, F.; Gomarooni, F.; Hehre, W. J., J. Mol. Struct. (Theochem.) 2000, 535, 287.

    Google Scholar 

  16. Corey, E. J.; Feiner, N. F., J. Org. Chem. 1980, 45, 757.

    Google Scholar 

  17. Corey, E. J.; Feiner, N. F., J. Org. Chem. 1980, 45, 765.

    Google Scholar 

  18. Juaristi, E.; Cuevas, G., The Anomeric Effect; CRC Press: Boca Raton, FL, 1995; references therein.

    Google Scholar 

  19. Thatcher, G., Ed., The Anomeric Effect and Associated Stereoelectronic Effects; American Chemical Society Symposium Series 539; American Chemical Society: Washington, DC, 1993.

    Google Scholar 

  20. Kirby, A. J., The Anomeric Effect and Related Stereoelectronic Effects of Oxygen; Springer: Berlin, 1983.

    Google Scholar 

  21. Perrin, C. L., Tetrahedron 1995, 51, 11901.

    Google Scholar 

  22. Juaristi, E.; Cuevas, G.; Vela, A., J. Amer. Chem. Soc. 1994, 116, 5796; references therein.

    Google Scholar 

  23. Juaristi, E.; Cuevas, G., Tetrahedron 1992, 48, 5019; references therein.

    Google Scholar 

  24. Borsdorf, R.; Matzen, P. F.; Remane, H.; Zschunke, A., Z. Chem. 1971, 11, 21.

    Google Scholar 

  25. Remane, H.; Borsdorf, R.; Zschunke, A., Z. Chem. 1971, 11, 427.

    Google Scholar 

  26. Nagao, Y.; Goto, M.; Kida, K.; Shiro, M., Heterocycles 1995, 41, 419.

    Google Scholar 

  27. Wiberg, K. B.; Castejon, H.; Bailey, W. F.; Ochterski, J., J. Org. Chem. 2000, 65, 1181.

    Google Scholar 

  28. Foresman, J. B.; Frisch, A., Exploring Chemistry with Electronic Structure Methods, 2nd edn.; Gaussian, Inc., Pittsburgh, PA, 1996.

    Google Scholar 

  29. Alabugin, I. V., J. Org. Chem. 2000, 65, 3910; references therein.

    Google Scholar 

  30. Jonas, V.; Frenking, G., Chem. Phys. Lett. 1991, 127, 175.

    Google Scholar 

  31. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E. Jr.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; and Pople, J. A., GAUSSIAN 98 (Revision A.6), Gaussian, Inc., Pittsburgh, PA, 1998.

    Google Scholar 

  32. Bondi, A., J. Phys. Chem. 1964, 68, 441.

    Google Scholar 

  33. Pauling, L., Nature of the Chemical Bond, 3rd edn.; Cornell University Press: Ithaca, NY, 1960; pp. 260-261.

    Google Scholar 

  34. Proserpio, D. M.; Hoffmann, R.; Levine, R. D., J. Amer. Chem. Soc. 1991, 113, 3217.

    Google Scholar 

  35. Chauvin, R., J. Phys. Chem. 1992, 96, 9194.

    Google Scholar 

  36. O'Keeffe, M.; Brese, N. E., J. Amer. Chem. Soc. 1991, 113, 3226.

    Google Scholar 

  37. Halgren, T., J. Amer. Chem. Soc. 1992, 114, 7827.

    Google Scholar 

  38. Allinger, N. L.; Zhou, X.; Bergsma, J., J. Mol. Struct.(Theochem.) 1994, 312, 69.

    Google Scholar 

  39. Carroll, F. A., Perspectives on Structure and Mechanism in Organic Chemistry; Brooks/Cole: New York, 1998; pp. 5-8.

    Google Scholar 

  40. Wiberg, K. B.; Murcko, M. A., J. Comput. Chem. 1987, 8, 1124.

    Google Scholar 

  41. Allinger, N. L.; Yuh, Y. H.; Lii, J.-J., J. Amer. Chem. Soc. 1989, 111, 8551.

    Google Scholar 

  42. Lowe, G.; Thatcher, R. J.; Turner, J. C. G.; Waller, A.; Watkin, D. J., J. Amer. Chem. Soc. 1988, 110, 8512.

    Google Scholar 

  43. Lambert, J. B.; Keske, R. G., J. Org. Chem. 1966, 31, 3429.

    Google Scholar 

  44. Eliel, E. L.; Chandrasenkaran, S., J. Org. Chem. 1982, 47, 4783.

    Google Scholar 

  45. Eliel, E. L.; Hargrave, K. D.; Pietrusiewicz, K. M.; Manoharan, M., J. Amer. Chem. Soc. 1982, 104, 3635.

    Google Scholar 

  46. Freeman, F.; Kasner, M. L.; Hehre, W. J., J. Mol. Struct.(Theochem.) 2001, 574, 19.

    Google Scholar 

  47. Freeman, F.; Hehre, W. J., J. Mol. Struct.(Theochem.) 2000, 529, 225.

    Google Scholar 

  48. Barbarella, G.; Dembech, P.; Garbesi, A.; Fava, A., Org. Magnetic Resonance 1976, 8, 469.

    Google Scholar 

  49. Willer, R. L.; Eliel, E. L., J. Amer. Chem. Soc. 1977, 99, 1925.

    Google Scholar 

  50. Barbarella, G.; Dembech, P.; Tugnoli, V., Org. Magnetic Resonance 1984, 22, 402.

    Google Scholar 

  51. Eliel, E. L.; Wilen, S. H., Stereochemistry of Organic Compounds; Wiley: New York, 1994; pp. 743-744.

    Google Scholar 

  52. Eliel, E. L.; Pietrusiewicz, K. M., Org. Magnetic Resonance 1980, 13, 193.

    Google Scholar 

  53. Eliel, E.; Pietrusiewicz, K. M., Polon. J. Chem. 1981, 55, 1265.

    Google Scholar 

  54. Freeman, F.; Nguyen, T.; Hehre, W. J., J. Mol. Struct.(Theochem.) 2001, 549, 203.

    Google Scholar 

  55. Kitching, W.; Olszowy, H.; Adcock, W., Org. Magnetic Resonance 1981, 15, 230.

    Google Scholar 

  56. Buchanan, G. W.; McCarville, A. R., Can. J. Chem. 1972, 50, 1965.

    Google Scholar 

  57. Buchanan, G. W., Can. J. Chem. 1982, 60, 2908.

    Google Scholar 

  58. Buchanan, G. W.; Preusser, S. H.; Webb, V. L., Can. J. Chem. 1984, 62, 1308.

    Google Scholar 

  59. Eliel, E. L.; Reese, M. C., J. Amer. Chem. Soc. 1968, 90, 1560.

    Google Scholar 

  60. Jensen, F. R.; Bushweller, C. H.; Beck, B. H., J. Amer. Chem. Soc. 1969, 91, 344.

    Google Scholar 

  61. Hofner, D.; Lesko, S. A.; Binsch, G., Org. Magnetic Resonance 1978, 11, 179.

    Google Scholar 

  62. Schneider, H.-J.; Hoppen, V., J. Org. Chem. 1978, 43, 3866.

    Google Scholar 

  63. Bugay, D. D.; Bushweller, C. H.; Danehy, C. T.; Hoogasian, S.; Blersch, J. A.; Leenstra, W. R. J. H., J. Phys. Chem. 1989, 93, 3908.

    Google Scholar 

  64. Chu, P.-S.; True, N. S., J. Phys. Chem. 1985, 89, 5613.

    Google Scholar 

  65. Salzner, U.; Schleyer, P. v. R., J. Org. Chem. 1994, 59, 2138.

    Google Scholar 

  66. Cremer, D.; Binkley, J. S.; Pople, J. A., J. Amer. Chem. Soc. 1976, 98, 6836.

    Google Scholar 

  67. Shen, Q.; Peloquim, J. N., Acta Chem. Scand. 1988, 42, 367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, F., Gomarooni, F. & Hehre, W.J. An Ab Initio Molecular Orbital Theory and Density Functional Theory (DFT) Study of Conformers and Rotamers of 4-Substituted (Methyl, Hydroxymethyl, Methanoyl, Ethanoyl, Cyano, Fluoro, Chloro, Bromo, Acetoxy) Tetrahydro-2H-thiopyran-1,1-dioxides. Structural Chemistry 13, 115–131 (2002). https://doi.org/10.1023/A:1015700414427

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015700414427

Navigation