Skip to main content
Log in

Electrically Modulated Transdermal Delivery of Fentanyl

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Test to determine if iontophoresis and electroporation, alone or in combination, can be used for rapid and modulated delivery of fentanyl.

Methods. Fentanyl citrate (5 mg/ml) dissolved in pH 4.0 citrate buffer was delivered in vitro across human epidermis. For iontophoresis, a current of 0.5 mA/cm2 was applied for 5 h, using silver/silver chloride electrodes. Electroporation protocol consisted of applying 15 exponential pulses of 500V (applied voltage) and 200 msec duration at the rate of 1 pulse per minute at time zero and, in some cases, repeating at 1.5 and 2.5 h.

Results. There was no measurable permeation of fentanyl through human epidermis under passive conditions. A significant flux (about 80 μg/cm2-hr) was achieved using iontophoresis and decreased once the current was turned off. A 4-fold higher flux and shorter lag time was observed with electroporation as compared to iontophoresis. The flux was found to recover quickly (within 1 h) following pulsing. Modulation of transdermal delivery of fentanyl was demonstrated by both iontophoresis and electroporation.

Conclusions. Electrically assisted transdermal delivery of fentanyl significantly increased transport compared to passive delivery. Also, rapid and modulated delivery was shown to be feasible by programming the electrical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. D. Roy and G. L. Flynn. Transdermal delivery of narcotic analgesics: pH, anatomic, and subject influences on cutaneous permeability of fentanyl and sufentanil. Pharm. Res. 7:842–847 (1990).

    Google Scholar 

  2. M. A. Simmonds. Transdermal fentanyl: Clinical development in the United States, Anti-Cancer. Drug 6:35–38 (1995).

    Google Scholar 

  3. R. Payne, S. Chandler, and M. Einhaus. Guidelines for the clinical use of transdermal fentanyl, Anti-Cancer. Drug 6:50–53 (1995).

    Google Scholar 

  4. B. Donner and M. Zenz. Transdermal fentanyl: A new step on the therapeutic ladder, Anti-Cancer. Drug 6:39–43 (1995).

    Google Scholar 

  5. M. A. Southam. Transdermal fentanyl therapy: System design, pharmacokinetics and efficacy, Anti-Cancer. Drug 6:29–34 (1995).

    Google Scholar 

  6. R. Miguel, J. M. Kreitzer, D. Reinhart, P. S. Sebel, J. Bowie, G. Freedman, and J. B. Eisenkraft. Postoperative pain control with a new transdermal fentanyl delivery system: A multicenter trial. Anesthesiology 83:470–477 (1995).

    Google Scholar 

  7. P. Fiset, C. Cohane, S. Browne, S. C. Brand, and S. L. Shafer. Biopharmaceutics of a new transdermal fentanyl device. Anesthesiology 83:459–469 (1995).

    Google Scholar 

  8. S. D. Roy, M. Gutierrez, G. L. Flynn, and G. W. Cleary. Controlled transdermal delivery of fentanyl: Characterizations of pressure-sensitive adhesives for matrix patch design. J. Pharm. Sci. 85:491–495 (1996).

    Google Scholar 

  9. S. Grond, L. Radbruch, and K. A. Lehmann. Clinical pharmacokinetics pharmacokinetics of transdermal opioids: focus on transdermal fentanyl. Clin. Pharmacokinet. 38:59–89 (2000).

    Google Scholar 

  10. W. Korte, N. deStoutz, and R. Morant. Day-to-day titration to initiate transdermal fentanyl in patients with cancer pain: Short-and long-term experiences in a prospective study of 39 patients. J. Pain Symptom Mgmt. 11:139–146 (1996).

    Google Scholar 

  11. S. Thysman and V. Preat. In vivo iontophoresis of fentanyl and sufentanil in rats: Pharmacokinetics and acute antinociceptive effects. Anesth. Analg. 77:61–66 (1993).

    Google Scholar 

  12. S. Thysman, C. Tasset, and V. Preat. Transdermal iontophoresis of fentanyl-Delivery and mechanistic analysis. Int. J. Pharm. 101:105–113 (1994).

    Google Scholar 

  13. M. A. Ashburn, J. Streisand, J. Zhang, G. Love, M. Rowin, S. Niu, J. K. Kievit, J. R. Kroep, and M. J. Mertens. The iontophoresis of fentanyl citrate in humans. Anesthesiology 82:1146–1153 (1995).

    Google Scholar 

  14. A. K. Banga. Electrically assisted transdermal and topical drug delivery, Taylor & Francis, London; 1998.

    Google Scholar 

  15. S. K. Gupta, M. Southam, G. Sathyan, and M. Klausner. Effect of current density on pharmacokinetics following continuous or intermittent input from a fentanyl electrotransport system. J. Pharm. Sci. 87:976–981 (1998).

    Google Scholar 

  16. S. K. Gupta, K. J. Bernstein, H. Noorduin, A. Van Peer, G. Sathyan, and R. Haak. Fentanyl delivery from an electrotransport system: delivery is a function of total current, not duration of current. J. Clin. Pharmacol. 38:951–958 (1998).

    Google Scholar 

  17. A. K. Banga and M. R. Prausnitz. Assessing the potential of skin electroporation for the delivery of protein-and gene-based drugs. Trends Biotechnol. 16:408–412 (1998).

    Google Scholar 

  18. M. J. Jaroszeski, R. Heller, and R. Gilbert. (Eds), Methods in Molecular Medicine: Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery-Electrically mediated delivery of molecules to cell, Humana Press, New Jersey, 2000.

    Google Scholar 

  19. R. Vanbever, E. LeBoulenge, and V. Preat. Transdermal delivery of fentanyl by electroporation.1. Influence of electrical factors. Pharm. Res. 13:559–565 (1996).

    Google Scholar 

  20. R. Vanbever, G. Langers, S. Montmayeur, and V. Preat. Transdermal delivery of fentanyl: rapid onset of analgesia using skin electroporation. J. Control. Release 50:225–235 (1998).

    Google Scholar 

  21. S. Chang, G. A. Hofmann, L. Zhang, L. J. Deftos, and A. K. Banga. The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones. J. Control. Release 66:127–133 (2000).

    Google Scholar 

  22. J. Lambropoulos, G. A. Spanos, N. V. Lazaridis, T. S. Ingallinera, and V. K. Rodriguez. Development and validation of an HPLC assay for fentanyl and related substances in fentanyl citrate injection, USP. J. Pharm. Biomed. Anal. 20:705–716 (1999).

    Google Scholar 

  23. U. Pliquett, E. A. Gift, and J. C. Weaver. Determination of the electric field and anomalous heating caused by exponential pulses with aluminum electrodes in electroporation experiments. Bioelectrochem. Bioenerg. 39:39–53 (1996).

    Google Scholar 

  24. D. Miklavcic, K. Beravs, D. Semrov, M. Cemazar, F. Demsar, and G. Sersa. The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys. J. 74:2152–2158 (1998).

    Google Scholar 

  25. R. Vanbever and V. Preat. In Vivo efficacy and safety of skin electroporation. Adv. Drug Deliv. Rev. 35:77–88 (1999).

    Google Scholar 

  26. M. S. Wallace, B. Ridgeway, E. Jun, G. Schulteis, D. Rabussay, and L. Zhang. Topical delivery of lidocaine in healthy volunteers by electroporation, electroincorporation, or iontophoresis: an evaluation of skin anesthesia. Reg Anesth. Pain Med. 26:229–238 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Banga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conjeevaram, R., Banga, A.K. & Zhang, L. Electrically Modulated Transdermal Delivery of Fentanyl. Pharm Res 19, 440–444 (2002). https://doi.org/10.1023/A:1015135426838

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015135426838

Navigation