Skip to main content
Log in

Contribution of molecular microbiology to the study in water pollution removal of microbial community dynamics

  • Published:
Reviews in Environmental Science and Biotechnology Aims and scope Submit manuscript

Abstract

Molecular tools based on 16S rRNA geneidentification are revolutioning microbialecology. After a short presentation of theadvantages and drawbacks of these new tools,the paper gives a succinct review of theirpossibilities as they have been applied to themicrobial ecology of water pollution removal.Examples of applications are presented in thefields of anaerobic digestion, nitrogen andphosphorus removal, filamentous bacteria andbioaugmentation. The data provided give someinsights about microbial diversity, populationdynamics, ecosystems stability and specificmicrobial population activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amann RI, Krumholz L & Stahl DA (1990a) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172: 762-770

    Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R & Stahl DA (1990b) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919-1925

    Google Scholar 

  • Amann RI, Ludwig W & Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169

    Google Scholar 

  • Amann RI, Lemmer H & Wagner M (1998) Monitoring the community structure of wastewater treatment plants: A comparison of old and new techniques. FEMS Microbiol Ecol. 25: 205-215

    Google Scholar 

  • Andreasen K & Nielsen PH (1997) Application of microautoradiography to the study of sustrate uptake by filamentous microorganisms in activated sludge. Appl. Environ. Microbiol. 63(9): 3662-3668

    Google Scholar 

  • Aoi Y, Miyoshi T, Okamoto T, Tsuneda S, Hirata A, Kitayama A & Nagamune T (2000) 'Microbial ecology of nitrifying bacteria in wastewater treatment process examined by fluorescence in situ hybridization. J. Biosci. Bioengin. 90(3): 234-240

    Google Scholar 

  • Becker S, Boger P, Oehlmann R & Ernst A (2000) PCR bias in ecological analysis: A case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl. Environ. Microbiol. 66: 4945-4953

    Google Scholar 

  • Backall LL, Rossetti S, Christensson C, Cunningham M, Hartman P, Hugenholtz P & Tandoi V (1997) The characterisation and description of representatives of 'G' bacteria from activated sludge plants. Letters Applied Microbiol. 25: 63-69

    Google Scholar 

  • Bond PL, Hugenholtz P, Keller J & Blackall L (1995) Bacterial community structures of phosphate-removing and nonphosphate-removing activated sludges from sequencing batch reactors. Appl. Environ. Microbiol. 61: 1910-1916

    Google Scholar 

  • Bond PL, Erhart R, Wagner M, Keller J & Blackall L (1999) Identification of some of the major groups of bacteria in efficient and non-efficient biological phosphorus removal activated sludge system. Appl. Environ. Microbiol. 65: 4077-4084

    Google Scholar 

  • Bouchez T, Patureau D, Dabert P, Juretschko S, Doré J, Delgenès JP, Moletta R & Wagner M (2000) Ecological study of a bioaugmentation failure. Environmental Microbiology 2: 179-190

    Google Scholar 

  • Bourrain M, Achouak W, Urbain V & Heulin T (1999) DNA extraction from activated sludges. Curr. Microbiol. 38(6): 315-319

    Google Scholar 

  • Cech JS & Hartman P (1993) Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Wat. Res. 7: 1219-1225

    Google Scholar 

  • Comeau Y, Hall KJ, Hancock REW & Oldham WK (1986) Biochemical model for enhanced biological phosphorus removal. Water Res. 20: 1511-1521

    Google Scholar 

  • Crocetti GR, Hugenholtz P, Bond P, Schuler A, Keller J, Jenkins D & Blackall L (2000) Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl. Environ. Microbiol. 66: 1175-1182

    Google Scholar 

  • Dabert P, Sialve B, Delgenès J-P, Moletta R & Godon JJ (2001a) Characterisation of the microbial 16S rDNA diversity of an aerobic phosphorus removal ecosystem and monitoring of its transition to nitrate respiration. Appl. Microbiol. Biotechnol.

  • Dabert P, Fleurat-Lessard A, Mounier E, Delgenès JP, Moletta R & Godon JJ (2001b) Monitoring of the microbial community of a sequencing batch reactor bioaugmented to improve its phosphorus removal capabilities. Water Sci. Technol. 43: 1-8

    Google Scholar 

  • Delbès C, Moletta R & Godon JJ (1998) 16S rDNA sequence diversity of a culture-accessible part of an anaerobic digestor bacterial community. Anaerobe 4: 267-275

    Google Scholar 

  • Delbès C, Moletta R & Godon JJ (2000) Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA PCR-Single-Strand Conformation Polymorphism analysis (SSCP). Environmental Microbiology 5: 506-515

    Google Scholar 

  • Delbès C, Moletta R & Godon JJ (2001) Bacterial and Archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digester ecosystem. FEMS Microbiol. Ecol. 35: 19-26

    Google Scholar 

  • De Los Reyes FL, Ritter W & Raskin L (1997) Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems. Appl. Environ. Microbiol. 63: 1107-1117

    Google Scholar 

  • De Los Reyes MF, De Los Reyes FL, Hernandez M & Raskin L (1998) Quantification of Gordona amarae strains in foaming activated sludge and anaerobic digester systems with oligonucleotide hybridization probes. Appl. Environ. Microbiol. 64: 2503-2512

    Google Scholar 

  • Eberl L, Schulze R, Ammendola A, Geisenberger O, Erhart R, Sternberg C, Molin S & Amann R (1997) Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiol. Letters 149: 77-83

    Google Scholar 

  • Eikelboom DH (1975) Filamentous organisms observed in activated sludge. Water Res. 9: 365-388

    Google Scholar 

  • Eikelboom DH (2000) Process control of activated sludge plants by microscopic investigation. IWA publishing CD-ROM

  • Farrelly V, Rayney FA & Stackebrandt E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Environ. Microbiol. 61: 2798-2801.

    Google Scholar 

  • Fernández AS, Huang S, Seston S, Xing J, Hickey R, Criddle C & Tiedje JM (1999) How stable is stable? Function versus community composition. Appl. Environ. Microbiol. 65: 3697-3704

    Google Scholar 

  • Fernandez AS, Hashsham SA, Dollhopf SL, Raskin L, Glagoleva O, Dazzo FB, Hickey RF, Criddle CS & Tiedje JM (2000) Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl. Environ. Microbiol. 66(9): 4058-4067

    Google Scholar 

  • Fisher MM & Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 65(10): 4630-4636

    Google Scholar 

  • Flärdh K, Cohen P & Kjelleberg S (1992) Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956. J. Bacteriol. 174(21): 6780-6788

    Google Scholar 

  • Fuhs GW & Chen M (1975) Microbiological basis of phosphate removal in the activated sludge process for treatment of wastewater. Microb. Ecol. 2: 119-138

    Google Scholar 

  • Godon JJ, Zumstein E, Dabert P, Habouzit F & Moletta R (1997) Molecular microbial diversity of an anaerobic digester determined by small-subunit rRNA sequence analysis. Appl. Environ. Microbiol. 63: 2802-2813

    Google Scholar 

  • Goldstein RM, Mallory LM & Alexander M (1985) Reasons for possible failure of inoculation to enhance biodegradation. Appl. Environ. Microbiol. 50: 977-983

    Google Scholar 

  • Griffin ME, McMahon KD, Mackie RI & Raskin L (1998) Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol. Bioeng. 57(3): 342-355

    Google Scholar 

  • Hesselmann RP, Werlen C, Hahn D, van der Meer JR & Zehnder AJ (1999) Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst. Appl. Microbiol. 22: 454-465

    Google Scholar 

  • Hugenholtz P, Goebel BM & Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765-4774

    Google Scholar 

  • Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Röser A, Koops HP & Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-Like bacteria as dominant populations. Appl. Environ. Microbiol. 64: 3042-3051

    Google Scholar 

  • Kanagawa T, Kamagata Y, Aruga S, Kohno T, Horn M & Wagner M (2000) Phylogenetic analysis of and oligonucleotide probe development for Eikelboom type 021N filamentous bacteria isolated from bulking activated sludge. Appl. Environ. Microbiol. 66: 5043-5052

    Google Scholar 

  • Kawaharasaki M, Tanaka H, Kanagawa T & Nakamura K (1999) In situ identification of polyphosphate-accumulating bacteria in activated sludge by dual staining with rRNA-targeted oligonucleotide probes and 4',6-diamidino-2-phenylindol (DAPI) at a polyphosphate-probing concentration. Water Res. 33: 257-265

    Google Scholar 

  • Kerrn-Jespersen JP & Henze M (1993) Biological phosphorus uptake under anoxic and aerobic conditions. Wat. Res. 27: 617-624

    Google Scholar 

  • Kortstee GJJ, Appeldoorn KJ, Bonting CFC, van Niel EWJ & van Veen HW (1994) Biology of polyphosphate-accumulating bacteria involved in enhanced biological phosphorus removal. FEMS Microbiol. Rev. 15: 137-153

    Google Scholar 

  • Kuba T, Smolders G, van Loosdrecht M & Heijnen J (1993) Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor. Water Sci. Technol. 27: 241-252

    Google Scholar 

  • Lazarova V, Bellahcen D, Rybacki D, Rittmann BE & Manem J (1998) Population dynamics and biofilm composition in a new three-phase circulating bed reactor. Water. Sci. Technol. 37: 149-158

    Google Scholar 

  • Lazarova V, Bellahcen D, Manem J, Stahl D A & Rittmann B E (1999) Influence of operating conditions on population dynamics in nitrifying biofilms. Water Sci. Technol. 39: 5-11

    Google Scholar 

  • Lee DH, Zo YG & Kim SJ (1996) Non-radioactive method to study genetic profiles of natural bacterial communities by PCR-single-stand-conformation polymorphism. Appl. Environ. Microbiol. 62: 3112-3120

    Google Scholar 

  • Lee N, Nielsen PK, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH & Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography-a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol. 65: 1289-1297

    Google Scholar 

  • Leclerc M, Delbès C, Moletta R & Godon JJ (2001) Single Strand Conformation Polymorphism monitoring of 16S rDNA Archaea during start-up of an anaerobic digester. FEMS Microbiol. Ecol. 34: 213-220

    Google Scholar 

  • Liu WT, Marsh TL, Cheng H & Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphism of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516-4522

    Google Scholar 

  • Liu WT, Nielsen AT, Wu JH, Tsai CS, Matsuo Y & Molin S (2001) In situ identification of polyphosphate-and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environmental Microbiology 3: 110-122

    Google Scholar 

  • Manz W, Wagner M, Amann R & Schleifer KH (1994) In situ characterization of the microbial consortia active in two wastewater treatment plants. Water Res. 28(8): 1715-1723

    Google Scholar 

  • Melvin WT & Hobson, PN (1994) Identification of anaerobic digester bacteria using a polymerase chain reaction method. Biores. Technol. 47: 73-80

    Google Scholar 

  • Merzouki M, Delgenès JP, Bernet N, Moletta R & Benlemlih M (1999) Polyphosphate-accumulating and denitrifying bacteria isolated from anaerobic-anoxic and anaerobic-aerobic sequencing batch reactors. Curr. Microbiol. 38: 9-17

    Google Scholar 

  • Mino T, van Loosdrecht MCM & Heijnen JJ (1998) Microbiology and biochemistry of the enhanced biological phosphate-removal process. Water Res. 32: 3193-3207

    Google Scholar 

  • Mobarry B, Wagner M, Urbain V, Rittmann B E & Stahl D (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62: 2156-2162

    Google Scholar 

  • Muyzer G, deWaal EC & Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700

    Google Scholar 

  • Nielsen AT, Liu WT, Filipe C, Grady LJr, Molin S and Stahl DA (1999) Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl. Environ. Microbiol. 65(3), 1251-1258

    Google Scholar 

  • Nielsen PH, Aquino de Muro M & Nielsen JL (2000) Studies on the in situ physiology of Thiothrix spp. present in activated sludge. Environmental Microbiology 2(4): 389-398

    Google Scholar 

  • Oerther DB, Danalewich J, Dulekgurgen E, Leveque E, Freedman DL & Raskin L (1998) Bioaugmentation of sequencing batch reactors for biological phosphorus removal: Comparative rRNA sequence analysis and hybridization with oligonucleotide probes. Water Sci. Technol. 37: 469-473

    Google Scholar 

  • Ohara H, Noguchi T, Tokumaru H, Kohno S & Yamanaka T (1994) Properties of a new strain of Nitrosomonas isolated from an aerobic biofilm in a domestic sewage treatment system. J. Ferment. Bioeng. 77: 358-362

    Google Scholar 

  • Ohashi A, Viraj de Silva DG, Mobarry B, Manem JA, Stahl D & Rittmann BE (1995) Influence of substrate C/N ratio on the structure of multi-species biofilms consisting of nitrifiers and heterotrophs. Water Sci. Technol. 32: 75-84

    Google Scholar 

  • Okabe S, Satoh H & Watanabe Y (1999) In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 65: 3182-3191

    Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 2(276)-(5313): 734-740

    Google Scholar 

  • Pernelle JJ, Cotteux E & Duchène P (1998) Effectiveness of oligonucleotide probes targeted against Thiothrix nivea and type 021N 16S rRNA for in situ identification and population monitoring in activated sludges. Water Sci. Technol. 4-5: 431-440

    Google Scholar 

  • Pujol R, Duchene P, Schetrite S & Canler JP (1991) Biological foams in activated sludge plants: Characterization and situation. Water Res. Rev. 25: 1399-1404

    Google Scholar 

  • Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops HP & Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl. Environ. Microbiol. 66: 5368-5382

    Google Scholar 

  • Raskin L, Stromley JM, Rittmann BE & Stahl DA (1994a) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 60: 1232-1240

    Google Scholar 

  • Raskin L, Poulsen LK, Noguera DR, Rittmann BE & Stahl DA (1994b) Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 60(4): 1241-1248

    Google Scholar 

  • Rittmann, BE & Whiteman R (1994) Bioaugmentation: A coming of age. Biotechnol. 1: 12-16

    Google Scholar 

  • Schmidt JE & Ahring BK (1999) Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors. Appl. Environ. Microbiol. 65(3): 1050-1054

    Google Scholar 

  • Schramm A, Larsen LH, Revsbech NP, Ramsing NB, Amann RI & Schleifer KH (1996) Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 62: 4641-4647

    Google Scholar 

  • Schramm A, de Beer D, Wagner M & Amann RI (1998) Identification and activities in situ of Nitrosospira and Nitrospira spp. As dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 64: 3480-3485

    Google Scholar 

  • Schramm A, de Beer D, van den Heuvel JC, Ottengraf S & Amann RI (1999) Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: Quantification by in situ hybridization and the use of microsensors. Appl. Environ. Microbiol. 65: 3690-3696

    Google Scholar 

  • Schramm A, de Beer D, Gieseke A & Amann RI (2000) Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environmental Microbiology 2(6): 680-686

    Google Scholar 

  • Schwieger F & Tebbe CC (1998) A new approach to utilize PCR Single strand conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl. Environ. Microbiol. 64(12): 4870-4876

    Google Scholar 

  • Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H & Nakamura K (1998) Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology 144: 2655-2665

    Google Scholar 

  • Stephenson D & Stephenson T (1992) Bioaugmentation for enhancing biological wastewater treatment. Biotech. Adv. 10: 549-559

    Google Scholar 

  • Stevens NCA (1989) The application of bioaugmentation to waste water treatment. Int. Biodeterioration. 25: 87-95

    Google Scholar 

  • Seviour RJ, Maszenan AM, Soddell JA, Tandoi V, Patel BKC, Kong Y & Schumann P (2000) Microbiology of the 'G-bacteria' in activated sludge. Environmental Microbiology 2(6): 581-593

    Google Scholar 

  • Suwa Y, Imamura Y, Suzuki T, Tashiro T & Urushigawa Y (1994) Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludge. Water Res. 28: 1523-1532

    Google Scholar 

  • Suzuki MT & Giovannoni ST (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625-630

    Google Scholar 

  • Vainio EJ, Moilanen A, Koivula TT, Bamford DH & Hantula J (1997) Comparison of partial 16S rRNA gene sequences obtained from activated sludge bacteria. Appl. Microbiol. Biotechnol. 48: 73-79

    Google Scholar 

  • van der Waarde JJ, Geurkink B, Henssen M & Heijnen G (1998) Detection of filamentous and nitrifying bacteria in activated sludge with 16S rRNA probes. Water Sci. Technol. 37: 475-479

    Google Scholar 

  • van Limbergen H, Top E & Verstraete W (1998) Bioaugmentation in activated sludge: current features and future perspectives. Appl. Microbiol. Biotechnol. 50: 16-23

    Google Scholar 

  • van Loosdrecht MCM, Hooijmans CM, Brdjanovic D & Heijnen JJ (1997a) Biological phosphate-removal processes. Appl. Microbiol. Biotechnol. 48: 289-296

    Google Scholar 

  • van Loosdrecht MCM, Smolders GJ, Kuba T & Heijnen JJ (1997b) Metabolism of micro-organisms responsible for enhanced biological phosphorus removal from wastewater. Antonie van Leeuwenhoek. 71: 109-116

    Google Scholar 

  • Wagner R (1994) The regulation of ribosomal RNA synthesis and bacterial cell growth. Arch. Microbiol. 161: 100-109

    Google Scholar 

  • Wagner N, Amann RI, Lemmer H & Schleifer KH (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59: 1520-1525

    Google Scholar 

  • Wagner M, Erhart R, Manz W, Amann RI, Lemmer H, Wedi D & Schleifer KH (1994a) Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl. Environ. Microbiol. 60: 792-800

    Google Scholar 

  • Wagner M, Amann RI, Kämpfer P, Assmus B, Hartmann A, Hutzler P, Springer N & Schleifer KH (1994b) Identification and in situ detection of Gram-negative filamentous bacteria in activated sludge. Syst. Appl. Microbiol. 176: 181-187

    Google Scholar 

  • Wagner M, Rath G, Amann RI, Koops HS & Schleifer KH (1995) In situ Identification of Ammonia-oxidizing Bacteria. Syst. Appl. Microbiol. 18: 251-264

    Google Scholar 

  • Zheng D, Alm E, Stahl D & Raskin L (1996) Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies. Appl. Environ. Microbiol. 62(12): 4504-4513

    Google Scholar 

  • Zumstein E, Moletta, R & Godon JJ (2000) Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environmental Microbiology 2: 69-78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Godon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dabert, P., Delgenès, JP., Moletta, R. et al. Contribution of molecular microbiology to the study in water pollution removal of microbial community dynamics. Re/Views in Environmental Science and Bio/Technology 1, 39–49 (2002). https://doi.org/10.1023/A:1015127411408

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015127411408

Navigation