Skip to main content
Log in

Glycerophosphate-Dependent Hydrogen Peroxide Production by Brown Adipose Tissue Mitochondria and Its Activation by Ferricyanide

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Oxidation of glycerophosphate (GP) by brown adipose tissue mitochondria in the presence of antimycin A was found to be accompanied by significant production of hydrogen peroxide. GP-dependent hydrogen peroxide production could be detected by p-hydroxyphenylacetate fluorescence changes or as an antimycin A-insensitive oxygen consumption. One-electron acceptor, potassium ferricyanide, highly stimulated the rate of GP-dependent antimycin A-insensitive oxygen uptake, which was prevented by inhibitors of mitochondrial GP dehydrogenase (mGPDH) or by coenzyme Q(CoQ). GP-dependent ferricyanide-induced peroxide production was also determined luminometrically, using mitochondria or partially purified mGPDH. Ferricyanide-induced peroxide production was negligible, when succinate or NADH was used as a substrate. These results indicate that hydrogen peroxide is produced directly by mGPDH and reflect the differences in the transport of reducing equivalents from mGPDH and succinate dehydrogenase to the CoQ pool. The data suggest that more intensive production of reactive oxygen species may be present in mammalian cells with active mGPDH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Barja, G. (1999). J. Bioenerg. Biomembr. 31, 347–366.

    Google Scholar 

  • Barja, G., and Herrero, A. (1998). J. Bioenerg. Biomembr. 30, 235–243.

    Google Scholar 

  • Bobyleva, V., Kneer, N., Bellei, M., Battelli, D., and Lardy, H. A. (1993). J. Bioenerg. Biomembr. 25, 313–321.

    Google Scholar 

  • Bobyleva, V., Pazienza, L., Muscatello, U., Kneer, N., and Lardy, H. (2000). Arch. Biochem. Biophys. 380, 367–372.

    Google Scholar 

  • Bolter, C. J., and Chefurka, W. (1990). Arch. Biochem. Biophys. 278, 65–72.

    Google Scholar 

  • Bucher, T., and Klingenberg, M. (1958). Angew. Chem. 70, 552–570.

    Google Scholar 

  • Chretien, D., Rustin, P., Bourgeron, T., Rotig, A., Saudubray, J. M., and Munnich, A. (1994). Clin. Chim. Acta 228, 53–70.

    Google Scholar 

  • Cole, E. S., Lepp, C. A., Holohan, P. D., and Fondy, T. P. (1978). J. Biol. Chem. 253, 7952–7959.

    Google Scholar 

  • Cottingham, I. R., and Ragan, C. I. (1980a). Biochem. J. 192, 9–18.

    Google Scholar 

  • Cottingham, I. R., and Ragan, C. I. (1980b). Biochem. J. 192, 19–31.

    Google Scholar 

  • Drahota, Z., Saf, P., Rauchova, H., and Kalous, M. (1995). Biochem. Biophys. Res. Commun. 210, 760–765.

    Google Scholar 

  • Garrib, A., and McMurray, W. C. (1984). Anal. Biochem. 139, 319–321.

    Google Scholar 

  • Gnaiger, E., Steinlechner-Maran, R., Mendez, G., Eberl, T., and Margreiter, R. (1995). J. Bioenerg. Biomembr. 27, 583–596.

    Google Scholar 

  • Halliwell, B. (1987). FASEB J. 1, 358–364.

    Google Scholar 

  • Herrero, A., and Barja, G. (2000). J. Bioenerg. Biomembr. 32, 609–616.

    Google Scholar 

  • Hittelman, K. J., Lindberg, O., and Cannon, B. (1969). Eur. J. Biochem. 11, 183–192.

    Google Scholar 

  • Houstek, J., Cannon, B., and Lindberg, O. (1975). Eur. J. Biochem. 54, 11–18.

    Google Scholar 

  • Houstek, J., and Drahota, Z. (1975). Mol. Cell Biochem. 7, 45–50.

    Google Scholar 

  • Houstek, J., Kopecky, J., and Drahota, Z. (1978). Comp. Biochem. Physiol. B 60, 209–214.

    Google Scholar 

  • Hyslop, P. A., and Sklar, L. A. (1984). Anal. Biochem. 141, 280–286.

    Google Scholar 

  • Ishihara, H., Nakazaki, M., Kanegae, Y., Inukai, K., Asano, T., Katagiri, H., Yazaki, Y., Kikuchi, M., Miyazaki, J., Saito, I., and Oka, Y. (1996). Diabetes 45, 1238–1244.

    Google Scholar 

  • Klement, P., Nijtmans, L. G., Van den Bogert, C., and Houstek, J. (1995). Anal. Biochem. 231, 218–224.

    Google Scholar 

  • Klingenberg, M. (1970). Eur. J. Biochem. 13, 247–252.

    Google Scholar 

  • Kornacker, M. S., and Ball, E. G. (1968). J. Biol. Chem. 243, 1638–1644.

    Google Scholar 

  • Kroemer, G., Dallaporta, B., and Resche-Rigon, M. (1998). Annu. Rev. Physiol. 60, 619–642.

    Google Scholar 

  • Kwong, L. K., and Sohal, R. S. (1998). Arch. Biochem. Biophys. 350, 118–126.

    Google Scholar 

  • Lindquist, J. M., and Rehnmark, S. (1998). J. Biol. Chem. 273, 30147–30156.

    Google Scholar 

  • MacDonald, M. J., and Brown, L. J. (1996). Arch. Biochem. Biophys. 326, 79–84.

    Google Scholar 

  • MacDonald, M. J., Efendic, S., and Ostenson, C. G. (1996). Diabetes 45, 886–890.

    Google Scholar 

  • Meglasson, M. D., Smith, K. M., Nelson, D., and Erecinska, M. (1989). Am. J. Physiol. 256, E173–E178.

    Google Scholar 

  • Mignotte, B., and Vayssiere, J. L. (1998). Eur. J. Biochem. 252, 1–15.

    Google Scholar 

  • Negre-Salvayre, A., Hirtz, C., Carrera, G., Cazenave, R., Troly, M., Salvayre, R., Penicaud, L., and Casteilla, L. (1997). FASEB J. 11, 809–815.

    Google Scholar 

  • Osumi, T., and Hashimoto, T. (1978). Biochem. Biophys. Res. Commun. 83, 479–485.

    Google Scholar 

  • Pedersen, P. L. (1999). J. Bioenerg. Biomembr. 31, 291–304.

    Google Scholar 

  • Rauchova, H., Battino, M., Fato, R., Lenaz, G., and Drahota, Z. (1992). J. Bioenerg. Biomembr. 24, 235–241.

    Google Scholar 

  • Rauchova, H., Kaul, P. P., and Drahota, Z. (1985). Gen. Physiol. Biophys. 4, 29–33.

    Google Scholar 

  • Richter, C. (1997). Biosci. Rep. 17, 53–66.

    Google Scholar 

  • Schagger, H., and von Jagow, G. (1987). Anal. Biochem. 166, 368–379.

    Google Scholar 

  • Schagger, H., and von Jagow, G. (1991). Anal. Biochem. 199, 223–231.

    Google Scholar 

  • Schapira, A. H. (1994). Mov. Disord. 9, 125–138.

    Google Scholar 

  • Scholz, T. D., Koppenhafer, S. L., TenEyck, C. J., and Schutte, B. C. (1997). J. Mol. Cell Cardiol. 29, 1605–1613.

    Google Scholar 

  • Sekhar, B. S., Kurup, C. K., and Ramasarma, T. (1987). J. Bioenerg. Biomembr. 19, 397–407.

    Google Scholar 

  • Sohal, R. S. (1991). Mech. Ageing Dev. 60, 189–198.

    Google Scholar 

  • Sohal, R. S. (1993). Free Radic. Biol. Med. 14, 583–588.

    Google Scholar 

  • Swierczynski, J., Scislowski, P., and Aleksandrowicz, Z. (1976). Biochim. Biophys. Acta 429, 46–54.

    Google Scholar 

  • Turrens, J. F., Bickar, D., and Lehninger, A. L. (1986). Mol. Biochem. Parasitol. 19, 259–264.

    Google Scholar 

  • Wallace, D. C. (1999). Science 283, 1482–1488.

    Google Scholar 

  • Wilhelm, J., and Vilim, V. (1986). Anal. Biochem. 158, 201–210.

    Google Scholar 

  • Yu, C. A., Nagaoka, S., Yu, L., and King, T. E. (1978). Biochem. Biophys. Res. Commun. 82, 1070–1078.

    Google Scholar 

  • Zhang, L., Yu, L., and Yu, C. A. (1998). J. Biol. Chem. 273, 33972–33976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Drahota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drahota, Z., Chowdhury, S.K.R., Floryk, D. et al. Glycerophosphate-Dependent Hydrogen Peroxide Production by Brown Adipose Tissue Mitochondria and Its Activation by Ferricyanide. J Bioenerg Biomembr 34, 105–113 (2002). https://doi.org/10.1023/A:1015123908918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015123908918

Navigation