Skip to main content
Log in

Detection of grain protein content QTLs across environments in tetraploid wheats

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Grain protein content (GPC) is an important quality factor in both durum and bread wheats. GPC is considered to be a polygenic trait influenced by environmental factors and management practice. The objectives of this study were both to compare the quantitative trait loci (QTL) for GPC in a population of 65 recombinant inbred lines of tetraploid wheats evaluated in three locations for several years (eight data sets), and to investigate the genetic relationship among GPC and grain yield. QTLs were determined based on the Messapia × dicoccoides linkage map which covers 217 linked loci on the 14 chromosomes with 42 additional loci as yet unassigned to linkage groups. The map extends to 1352 cM; the average distance between adjacent markers was 6.3 cM. Seven QTLs for GPC, located on the chromosome arms 4BS, 5AL, 6AS (two loci), 6BS, 7AS and 7BS, were detected that were significant in at least one environment at P<0.001 or in at least two environments at P<0.01. One QTL was significant in all but one environment, two were significant in four or five environments, and four were significant in two out of eight environments. Six out of seven protein content QTLs had pleiotropic effects or were associated to QTLs for grain yield and explained the negative correlation among GPC and yield components. The present results support the concept that studies conducted in a single environment are likely to underestimate the number of QTLs that can influence a trait and that the phenotypic data for a quantitative trait should be collected over a range of locations to identify putative QTLs and determine their phenotypic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajmone Marsan, P., Monfredini, G. and Ludwing, W.F. 1995. In an elite cross of maize a major quantitative trait locus controls one fourth of the genetic variation for grain yield. Theor. Appl. Genet. 90: 415-424.

    Google Scholar 

  • Anderson, J.A., Sorrells, M.E. and Tanksley, S.D. 1993. RFLP analysis of genomic regions associated with resistance to preharvest sprouting in wheat. Crop Sci. 33: 453-459.

    Google Scholar 

  • Autran, J.C., Abecassis, J. and Feillet, P. 1996. Statistical evaluation of different technological and biochemical tests for quality assessment in durum wheat. Cereal Chem. 63: 390-394.

    Google Scholar 

  • Avivi, L. 1978. High grain protein content in wild tetraploid wheat, Triticum dicoccoides Korn. In: S. Ramajujam (Ed.) Proceedings of the 5th International Wheat Genetics Symposium (23-28 February 1978, New Delhi, India), Indian Society of Genetics and Plant Breeding, New Delhi, India, pp. 372-380.

    Google Scholar 

  • Bhatia, C.R. and Rabson, R. 1978. Relationship of grain yield and nutritional quality. In: Nutritional quality of cereal grains: genetic and agronomic improvement. Agronomy Monograph 28, ASA-CSSA-SSSA, Madison, WI 53711, USA, pp. 11-43.

    Google Scholar 

  • Blanco, A., De Giovanni, C., Laddomada, B., Sciancalepore, A., Simeone, R., Devos, K.M. and Gale, M.D. 1996. Quantitative trait loci influencing grain protein content in tetraploid wheats. Plant Breed. 115: 310-316.

    Google Scholar 

  • Blanco, A., Bellomo, M.P., Cenci, A., De Giovanni, C., D'Ovidio, R., Iacono, E., Laddomada, B., Pagnotta, M.A., Porceddu, E., Sciancalepore, A., Simeone, R. and Tanzarella, O.A. 1998a. A genetic map of durum wheat. Theor. Appl. Genet. 97: 721-728.

    Google Scholar 

  • Blanco, A., Bellomo, M.P., Lotti, C., Maniglio, T., Pasqualone, A., Simeone, R., Troccoli, A. and Di Fonzo, N. 1998b. Genetic mapping of sedimentation volume across environments using recombinant inbred lines of durum wheat. Plant Breed. 117: 413-417.

    Google Scholar 

  • Blanco, A., Laddomada, B., Lotti, C., Simeone, R., Pasqualone, A., Troccoli, A. and Di Fonzo, N. 2001. Detection of quantitative trait loci for grain yield and yield components across environments in durum wheat. Cereal Res. Comm. (in press).

  • Chee, P.W., Elias, E.M., Kianinan, S.F. and Anderson, J.A. 1998. Introgression of a high protein gene from LDN(DIC-6B) substitution line. In: A.E. Slinkard (Ed.) Proceedings of the 9th International Wheat Genetics Symposium (2-7 August 1998, Saskatoon), vol. 2, University Extension Press, University of Saskatchewan, Saskatoon, Canada, pp. 179-181.

    Google Scholar 

  • Costa, J.M. and Kronstad, W.E. 1994. Association of grain protein concentration and selected traits in hard red winter wheat populations in the pacific north-west. Crop Sci. 34: 1234-1239.

    Google Scholar 

  • Cox, M.C., Qualset, C.O. and Rains, D.W. 1985. Genetic variation for nitrogen assimilation and translocation in wheat. II. Nitrogen assimilation in relation to grain yield and protein. Crop Sci. 25: 430-435.

    Google Scholar 

  • D'Egidio, M.G., Mariani, B.M., Nardi, S., Novaro, P. and Cubadda, R. 1990. Chemical and technological variables and their relationships: a predictive value equation for pasta cooking quality. Cereal Chem. 67: 275-281.

    Google Scholar 

  • Dudley, J.W. 1993. Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci. 33: 660-668.

    Google Scholar 

  • Frey, K.J. 197. Proteins of oats. Z. Pflanzenzücht. 78: 185-215.

    Google Scholar 

  • Grama, A.A., Gerechter-Amiti, Z.K., Blum, A. and Rubenthaler, G.L. 1984. Breeding bread wheat cultivars for high protein content by transfer of protein genes from Triticum dicoccoides. In: Cereal Grain Protein Improvement, International Atomic Energy Agency, Vienna, pp.145-153.

    Google Scholar 

  • Grant, C.A., Gauer, L.E., Gehl, D.T. and Bailey, L.D. 1991. Protein and nitrogen utilization by barley cultivars response to nitrogen fertilizer under varying moisture conditions. Can. J. Plant Sci. 71: 997-1009.

    Google Scholar 

  • Harjit-Singh Prasad, M., Varshney, R.K., Roy, J.K., Baylan, H.S., Dhaliwal, H.S. and Gupta, P.K. 2001. STMS markers for grain protein content and their validation using near-isogenic lines in bread wheat. Plant Breed. 120: 273-278.

    Google Scholar 

  • Joppa, L.R. and Cantrell, R.G. 1990. Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci. 30: 1059-1064.

    Google Scholar 

  • Joppa, L.R., Du, C., Hart, G.E. and Hareland, G.A. 1997. Mapping genes for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci. 37: 1586-1589.

    Google Scholar 

  • Kearsey, M.J. and Hyne, V. 1994. QTL analysis: a simple markerregression approach. Theor. Appl. Genet. 89: 698-702.

    Google Scholar 

  • Konzak, C.F. 1977. Genetic control of the content, aminoacid composition and processing properties of proteins in wheat. Adv. Gen. 19: 407-582.

    Google Scholar 

  • Kovacs, M.I.P., Howes, N.K., Clarke, J.M. and Leisle, D. 1998. Quality characteristics of durum wheat lines deriving high protein from Triticum dicoccoides (6B) substitution. J. Cereal Sci. 27: 47-51.

    Google Scholar 

  • Lander, E. and Kruglyak, L. 1995. Genetic dissection of complex trait: guidelines for interpreting and reporting linkage results. Nature Genet. 11: 241-247.

    Google Scholar 

  • Law, D.N., Young, C.F., Brown, J.W.S., Snape, J.W. and Worland, A.J. 1978. The study of grain protein control in wheat using whole chromosome substitution lines. In: Seed Protein Improvement by Nuclear Techniques, International Atomic Energy Agency, Vienna, pp. 483-502.

    Google Scholar 

  • Lee, S.H., Bailey, M.A., Mian, M.A.R., Carter, T.E., Ashley, D.A., Hussey, R.S., Parrott, W.A. and Boerma, H.R. 1996. Molecular markers associated with soybean plant height, lodging and maturity across locations. Crop Sci. 36: 728-735.

    Google Scholar 

  • Levy, A.A. and Feldman, M. 1989. Location of genes for high grain protein percentage and other quantitative traits in wild wheat, T. turgidum var. dicoccoides. Euphytica 41: 113-122.

    Google Scholar 

  • Ma, Z.Q., Gill, B.S., Sorrells, M.E. and Tanksley, S.D. 1993. RFLP markers linked to two Hessian fly-resistance genes in wheat (Triticum aestivum L.) from Triticum tauschii (Coss) Schmal. Theor. Appl. Genet. 85: 750-754.

    Google Scholar 

  • Mather, K. and Jinks, J.L. 1971. Biometrical Genetics. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Matsuo, R.R., Dexter, J.E., Kosmolak, F.G. and Leisle, D. 1982. Statistical evaluation of tests for assessing spaghetti-making quality of durum wheat. Cereal Chem. 59: 222-228.

    Google Scholar 

  • McIntosh, R.A., Hart, G.E., Devos, K.M., Gale, M.D. and Rogers, W.G. 1998. Catalogue of gene symbols for wheat. In: A.E. Slinkard (Ed.) Proceedings of the 9th International Wheat Genetics Symposium (Saskatoon, 2-7 August 1998), vol. 5, University Extension Press, University of Saskatchewan, Saskatoon, Canada.

    Google Scholar 

  • McNeal, F.H., Berg, M.A., McGuire, C.F., Stewart, V.R. and Baldridge, D.E. 1972. Grain and plant nitrogen relationships in eight spring wheat crosses, Triticum aestivum L. Crop Sci. 12: 599-602.

    Google Scholar 

  • Mesfin, A., Frohberg, R.C. and Anderson, J.A. 1999. RFLP markers associated with high grain protein from Triticum turgidum L. var. dicoccoides introgressed into hard red spring wheat. Crop Sci. 39: 508-513.

    Google Scholar 

  • Nelson, J.C. 1997. QGENE: software for marker-based genomic analysis and breeding. Mol. Breed. 3: 239-245.

    Google Scholar 

  • Parker, G.D., Chalmers, K.J., Rathien, A.J. and Langridge, P. 1998. Mapping loci associated with flour colour in wheat (Triticum aestivum L). Theor. Appl. Genet. 97: 238-245.

    Google Scholar 

  • Paterson, A.H. 1998. QTL mapping in DNA marker-assisted plant and animal improvement. In: A.H. Paterson (Ed) Molecular Dissection of Complex Traits, CRC Press, New York, pp. 131-143.

    Google Scholar 

  • Paterson, A.H., Deverna, J.W., Lanini, B. and Tanksley, S.D. 1990. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124: 735-742.

    Google Scholar 

  • Paterson, A.H., Damon, S., Hewitt, J.D., Zamir, D., Rabinowitch, H.D., Lincoln, S.E., Lander, E.S. and Tanksley, S.D. 1991. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics 127: 181-197.

    Google Scholar 

  • Paterson, A.H., Lander, E.S., Hewitt, J.D., Paterson, S., Lincoln, S.E. and Tanksley, S.D. 1988. Resolution of quantitative traits into Mendelian factors by using a complete RFLP linkage map. Nature 335: 721-726.

    Google Scholar 

  • Perretant, M.R., Cadalen, T., Charmet, G., Sourdille, P., Nicolas, P., Boeuf, C., Tixier, M.H., Branlard, G., Bernard, S. and Bernard, M. 2000. QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor. Appl. Genet. 100: 1167-1175.

    Google Scholar 

  • Quarrie, S.A., Gulli, M., Calestani, C., Steed, A. and Marmiroli, N. 1994. Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theor. Appl. Genet. 89: 794-800.

    Google Scholar 

  • Simmonds, N.W. 1995. The relation between yield and protein in cereal grain. J. Sci. Food Agric. 67: 309-315.

    Google Scholar 

  • Snape, J.W., Hyne, V. and Aitken, K. 1995. Targeting genes in wheat using marker-mediated approaches. In: Z.S. Li and Z.Y. Xin (Eds.) Proceeding of the 8th International Wheat Genetics Symposium (Beijing, 20-25 July 1993), China Agric Scientech Press, Beijing, China, pp. 749-759.

    Google Scholar 

  • Sourdille, P., Perretant, M.R., Charmet, G., Leroy, P., Gautier, M.F., Joudrier, P., Nelson, J.C., Sorrells, M.E. and Bernard, M. 1996. Linkage between RFLP markers and gene affecting kernel hardness in wheat. Theor. Appl. Genet. 93: 580-586.

    Google Scholar 

  • Sourdille, P., Perretant, M.R., Charmet, G., Cadalen, T., Tixier, M.H., Joudrier, P., Gautier, M.F., Branlard, G., Bernard, S., Boeuf, C. and Bernard, M. 1999. Detection of QTL for bread making quality in wheat using molecular markers. In: G.T. Scarascia Mugnozza, E. Porceddu and M.A. Pagnotta (Eds.) Genetics and Breeding for Crop Quality and Resistance, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 361-366.

    Google Scholar 

  • Stein, I.S., Sears, R.G., Hoseney, R.C., Cox, T.S. and Gill, B.S. 1992. Chromosomal location of genes influencing grain protein concentration and mixogram properties in Plainsman V winter wheat. Crop Sci. 32: 573-580.

    Google Scholar 

  • Stuber, C.W., Lincoln, S.E., Wolff, D.W., Helentjaris, T. and Lander, E.S. 1992. Identification of genetic factors contributing to heterosis in a hybrid from two elite inbred lines using molecular markers. Theor. Appl. Genet. 132: 823-839.

    Google Scholar 

  • Tanksley, S.D. 1993. Mapping polygenes. Annu. Rev. Genet. 27: 205-233.

    Google Scholar 

  • Tanksley, S.D., Grandillo, S., Fulton, T.M., Zamir, D., Eshed, Y., Petiard, V., Lopez, J. and Beck-Bunn, T. 1996. Advanced backcross QTL analysis in a cross between en elite processing line of tomato and its wild relative L. pimpinellifolium. Theor. Appl. Genet. 92: 213-224.

    Google Scholar 

  • Terman, G.L. 1979. Yields and protein content of wheat grain, as affected by cultivars, N, and environmental growth factors. Agron. J. 71: 437-440.

    Google Scholar 

  • Udall, J.A., Sonza, E., Anderson, J., Sorrells, M.E. and Zemetra, R.S. 1999. Quantitative trait loci for flour viscosity in winter wheat. Crop Sci. 39: 238-242.

    Google Scholar 

  • Zanetti, S., Keller, M., Winzeler, M., Saurer, W., Keller, B. and Messmer, M. 1999. QTL for quality parameters for breadmaking quality in a segregating wheat by spelt population. In: G.T. Scarascia Mugnozza, E. Porceddu and M.A. Pagnotta (Eds) Genetics and Breeding for Crop Quality and Resistance, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 357-360.

    Google Scholar 

  • Zhuang, J.Y., Lin, H.X., Lu, J., Qian, H.R., Hittalmani, S., Huang, N. and Zheng, K.L. 1997. Analysis of QTL × environment interaction for yield components and plant height in rice. Theor. Appl. Genet. 95: 799-808.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco, A., Pasqualone, A., Troccoli, A. et al. Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Mol Biol 48, 615–623 (2002). https://doi.org/10.1023/A:1014864230933

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014864230933

Navigation