Skip to main content
Log in

Characterization of Nanoporous Membranes for Immunoisolation: Diffusion Properties and Tissue Effects

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Through its ability to achieve highly controled microarchitectures on size scale relevant to living systems, microfabrication technology offers unique opportunities to more precisely engineer biocapsules that allow free exchange of nutrients, waste products, and secreted therapeutic proteins but exclude the passage of lymphocytes and antibodies responsible for the onset of the foreign body response. In this study, diffusion of biologically relevant molecules through the microfabricated membrane was characterized using a two-compartment diffusion chamber. In order to improve in vivo long term diffusion performance, biocapsules were implanted in animals and the degree of foreign body response was assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • P. Aebischer, S.R. Winn, and P.M. Galletti, Brain Research 448, 364-368 (1998).

    Google Scholar 

  • S.K. Aityan and V.I. Portnov, Gen. Physiol. Biophys. 5(4), 351-364 (1986).

    Google Scholar 

  • S.K. Aityan and V.I. Portnov, Gen. Physiol. Biophys. 7(6), 591-611 (1988).

    Google Scholar 

  • J.J. Altman, Pancreatic Islet Cell Transplantation Ricordi, C. (ed.) (1991), pp.216-222.

  • J.E. Babensee, J.M. Anderson, L.V. McIntire, and A.G. Mikos, Advanced Drug Delivery Reviews 33, 111-139 (1998).

    Google Scholar 

  • E. Bobbioni-Harsch, F. Rohner-Jeanrenaud, M. Koudelka, N.D. Rooji, and B. Jeanreaud, J. Biomed. Eng. 15, 457-463 (1993).

    Google Scholar 

  • C.K. Colton, Cell Transplantation 4, 415-436 (1995).

    Google Scholar 

  • T.A. Desai, W.H. Chu, J.K. Tu, G.M. Beattie, A. Hayek, and M. Ferrari, Biotechnology and Bioengineering 57, 118-120 (1998).

    Google Scholar 

  • T.A. Desai, D. Hansford, and M. Ferrari, J. Membrane Science 159, 221-231 (1999a).

    Google Scholar 

  • T.A. Desai, D. Hansford, L. Kulinsky, A. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, and M. Ferrari, J. Biomedical Microdevices 2(1), 11-40 (1999b).

    Google Scholar 

  • T.A. Desai, W.H. Chu, G. Rasi, P.S. Vallebona, E. Guarino, and M. Ferrari, J. Biomedical Microdevices 1(2), 131-181 (1999c).

    Google Scholar 

  • T.A. Desai, D.J. Hansford, L. Leoni, M. Essenpreis, and M. Ferrari, Biosensors and Bioelectronics 15(9-10) 453-462 (2000).

    Google Scholar 

  • X.W. Fu and A.M. Sun, Transplantation 47, 432-435 (1989).

    Google Scholar 

  • M. Goosen, Biotechnology Bioengineering 27, 146-150 (1985).

    Google Scholar 

  • K. Hahn, J. Karger, and V. Kukla, Physical Review Letters 76(15), 2762-2765 (1996).

    Google Scholar 

  • D.J. Hansford, In Materials Science and Mineral Engineering, (University of California, Berkeley, CA, 1999).

    Google Scholar 

  • J.A. Hernandez and J. Fischbarg, Biophysics Journal 67(3), 996-1006 (1994).

    Google Scholar 

  • H. Iwata, K. Kobayashi, T. Takagi, T. Oka, H. Yang, H. Amemiya, T. Tsuji, and F. Ito, J. Biomed. Mater. Res. 28, 1003-1011 (1994).

    Google Scholar 

  • H. Iwata, N. Morikawa, T. Fujii, T. Tagaki, T. Samejima, and Y. Ikada, Transplant. Proc. 27, 3224-3226 (1995).

    Google Scholar 

  • P. Lacy, Science 254, 1728-1734 (1992).

    Google Scholar 

  • K.J. Lafferty, Diabetes Nutrition Metabolism 2, 323-332 (1989).

    Google Scholar 

  • F. Lim and A.M. Sun, Science 210, 908-910 (1980).

    Google Scholar 

  • Z.P. Lum, M. Krestow, I.T. Tai, I. Vacek, and A.M. Sun, Transplantation 53, 1180-1183 (1992).

    Google Scholar 

  • P. Nelson and S. Auerbach, J. Chemical Physics 110(18), 9235-9244 (1999).

    Google Scholar 

  • G.M. O'Shea, M.F.A. Goosen, and A.M. Sun, Biochim. Biophys. Acta 804, 133-136 (1984).

    Google Scholar 

  • R. Robitaille, F.F. Paiseau, F.A. Leblond, M. Lamourex, Y. Lepage, and J.P. Hallé, Journal of Biomedical Materials Research 44, 116-120 (1999).

    Google Scholar 

  • R. van Schilfgaarde and P. de Vos, J. Mol. Med. 77(1), 199-205 (Jan 1999).

    Google Scholar 

  • A.A. Sharkawy, B. Klitzman, G.A. Truskey, W.M. Reichert, J. Biomed. Mater. Res. 37, 401-412 (1997).

    Google Scholar 

  • U. Siebers, A. Horcher, R.G. Bretzel, K. Federlin, and T. Zekorn, Ann. NY Acad. Sci. 31(831), 304-312 (Dec 1997).

    Google Scholar 

  • Tresco, S.R. Winn, and P. Aebischer, American Society for Artificial Internal Organs Journal 38, 17-23 (1992).

    Google Scholar 

  • T. Wang, I. Lacik, M. Brissova, A.V. Anilkumar, A. Prokop, D. Hunkeler, R. Green, K. Shahrokhi, and A.C. Powers, Nature Biotechnology 15, 358-362 (1997).

    Google Scholar 

  • Q.C. Wei, Bechinger, and P. Leiderer, Science 287(5453), 625-627 (2000).

    Google Scholar 

  • G.D.M. Wells, M.M. Fisher, and M.V. Sefton, Biomaterials 14, 615-620 (1993).

    Google Scholar 

  • C. Woodward, Diabetes Care 5, 278-281 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leoni, L., Boiarski, A. & Desai, T.A. Characterization of Nanoporous Membranes for Immunoisolation: Diffusion Properties and Tissue Effects. Biomedical Microdevices 4, 131–139 (2002). https://doi.org/10.1023/A:1014639332543

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014639332543

Navigation