Skip to main content
Log in

Iron(III) Oxide Nanoparticles in a Polyethylene Matrix

  • Published:
Inorganic Materials Aims and scope

Abstract

A method is proposed for the preparation of iron(III) oxide nanoparticles via thermal decomposition of iron(III) acetate in a high-temperature solution of polyethylene. The nanoparticles were characterized by EXAFS, EPR, and Mössbauer spectroscopy. The nearest neighbor environment of Fe in the nanoparticles was shown to be similar to that in the structure of γ-Fe2O3 . According to the Mössbauer results, the material contains iron(III) oxide in superparamagnetic and ferromagnetic states similar to γ-Fe2O3 . The particle size determined by high-resolution transmission electron microscopy is consistent with x-ray diffraction data. Experimental data are presented on the field-dependent magnetization of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kozinkin, A.V., Vlasenko, V.G., Gubin, S.P., et al., Clusters in a Polymer Matrix: II. Investigation of the Composition and Structure of Iron-Containing Clusters in a Polyethylene Matrix, Neorg. Mater., 1996, vol. 32, no. 4, pp. 422-428 [Inorg. Mater. (Engl. Transl.), vol. 32, no. 4, pp. 376-381].

    Google Scholar 

  2. Pankratov, D.A., Y urkov, G.Yu., Kosobudskii, I.D., and Perfil'ev, Yu.D., Oxidation of Cluspol Composites, “Effekt Messbauera: magnetizm, materialovedenie, gamma-optika” (Int.Conf. on Mössbauer Effect: Magnetism, Materials Research, and Gamma-Ray Optics), Kazan, 2000, p. 117.

  3. Griffiths, G.H., O'Horo, M.P., and Smith, T.W., The Structure, Magnetic Characterization, and Oxidation of Colloidal Iron Dispersion, J. Appl. Phys., 1979, vol. 50, no. 11, pp. 7108-7115.

    Google Scholar 

  4. Lin Guo, Zhonghua Wu, Tao Liu, and Shihe Yang, The Effect of Surface Modification on the Microstructure and Properties of ?-Fe2O3 Nanoparticles, Physica E (Amsterdam), 2000, vol. 8, pp. 199-203.

    Google Scholar 

  5. Zhang, L., Papaefthymiou, G.C., and Ying, J.Y., Size Quantization and Interfacial Effect on a Novel ?-Fe2O3/SiO2 Magnetic Nanocomposite via Sol-Gel Matrix-Mediated Synthesis, J. Appl. Phys., 1997, vol. 81, no. 10, pp. 6892-6900.

    Google Scholar 

  6. Suzdalev, I.P. and Suzdalev, P.I., Nanoclusters and Nanocluster Systems: Constitution, Interaction, and Properties, Usp. Khim., 2001, vol. 70, no. 3, pp. 203-240.

    Google Scholar 

  7. Rozenberg, A.S., Formation of Ultrafine Particles in Heterogeneous Reactions, Doctoral (Chem.) Dissertation, Chernogolovka: Inst. of Chemical Physics, Russ. Acad.Sci., 1997.

    Google Scholar 

  8. Corrias, A., Ennas, G., Mountjoy, G., and Paschina, G., An X-ray Absorption Spectroscopy Study of the Fe K Edge in Nanosized Maghemite and in Fe2O3-SiO2 Nanocomposites, Phys. Chem., 2000, vol. 2, pp. 1045-1050.

    Google Scholar 

  9. Kosobudskii, I.D. and Gubin, S.P., Metallic Clusters in Polymer Matrices: A New Type of Metal-Filled Polymers, Vysokomol. Soedin., 1985, vol. 27, no. 3, pp. 689-695.

    Google Scholar 

  10. Shuvaev, A.T., Khel'mer, B.Yu., and Lyubeznova, T.A., Spectrometric Facility for DRON-3 X-ray Diffractometers for Investigation of the Short-Range Order in Crystalline and Disordered Systems, Prib. Tekh. Eksp., 1988, no. 3, pp. 234-237.

    Google Scholar 

  11. Kochubei, D.I., Babanov, Yu.A., Zamaraev, K.I., et al., Rentgenospektral'nyi metod issledovaniya struktury amorfnykh tel: EXAFS-Spektroskopiya (EXAFS Spectroscopy: A Tool for Probing the Structure of Amorphous Materials), Novosibirsk: Nauka, 1988.

    Google Scholar 

  12. Zabinski, S.I., Rehr, J.J., Ankudinov, A., et al., Multiple-Scattering Calculation of X-ray Absorption Spectra, Phys. Rev. B: Condens. Matter, 1995, vol. 52, pp. 2995-3009.

    Google Scholar 

  13. Blake, R.L., Nessevick, R.E., Zoltai, T., and Finger, L.W., Refinement of the Hematite Structure, Am. Mineral., 1966, vol. 51, pp. 123-129.

    Google Scholar 

  14. Wells, A., Structural Inorganic Chemistry, Oxford (UK): Clarendon, 1984, vol. 2. Translated under the title Struk-turnaya neorganiheskaya khimiya, Moscow: Mir, 1987, vol. 2.

    Google Scholar 

  15. Oh, S.J., Cook, D.C., and Townsend, H.E., Characterization of Iron Oxides Commonly Forming as Corrosion Products on Steel, Hyperfine Interact., 1998, vol. 112, pp. 59-64.

    Google Scholar 

  16. Suzdalev, I.P., Dinamicheskie effekty v gamma-rezonansnoi spektroskopii (Dynamic Effects in Mössbauer Spectroscopy), Moscow: Atomizdat, 1979.

    Google Scholar 

  17. Kliava, J. and Berger, R., Size and Shape Distribution of Magnetic Nanoparticles in Disordered Systems: Computer Simulations of Superparamagnetic Resonance Spectra, J. Magn. Magn. Mater., 1999, vol. 205, pp. 328-342.

    Google Scholar 

  18. Koksharov, Yu.A., Blyumenfel'd, L.A., Tikhonov, A.N., and Sherle, A.I., Microwave Absorption Hysteresis in Polycrystalline Ferromagnetics, Zh. Fiz. Khim., 1999, vol. 73, no. 10, pp. 1862-1866.

    Google Scholar 

  19. Petrov, Yu.I., Rusin, B.A., and Fedorov, Yu.A., Ferromagnetic Resonance in Fine Nickel, Cobalt, and Iron Particles, Fiz. Met. Metalloved., 1967, vol. 23, pp. 504-507.

    Google Scholar 

  20. Suzdalev, I.P., Superparamagnetism of Ultrafine Antiferromagnetic Particles, Fiz. Tverd. Tela (Leningrad), 1970, vol. 12, no. 4, pp. 988-990.

    Google Scholar 

  21. Krupyanskii, Yu.F. and Suzdalev, I.P., Magnetic Properties of Ultrafine Iron Oxide Particles, Zh. Eksp. Teor.Fiz., 1973, vol. 65, pp. 1715-1725.

    Google Scholar 

  22. Petrakovskii, G.A., Piskorskii, V.P., Sosnin, V.M., and Kosobudskii, I.D., Electron Paramagnetic Resonance of Superparamagnetic Transition-Metal Particles in Polymer Matrices, Fiz. Tverd. Tela (Leningrad), 1983, vol. 25, no. 11, pp. 3256-3260.

    Google Scholar 

  23. Aharoni, S. and Litt, M., Superparamagnetism and Exchange Anisotropy in Microparticles of Magnetite Embedded in an Inert Carbonaceous Matrix, J. Appl.Phys., 1971, vol. 42, no. 1, pp. 352-356.

    Google Scholar 

  24. Sharma, V.K. and Waldner, F., Superparamagnetic and Ferrimagnetic Resonance of Ultrafine Fe3O4 Particles in Ferrofluids, J. Appl. Phys., 1977, vol. 48, no. 10, pp. 4298-4301.

    Google Scholar 

  25. De Biasi, R.S. and Devezas, T.C., Anisotropy Field of Small Magnetic Particles as Measured by Resonance, J. Appl. Phys., 1977, vol. 49, no. 4, pp. 2466-2470.

    Google Scholar 

  26. Patel, J.M., Vaidya, S.P., and Mehta, R.V., Electron Spin Resonance of Certain Magnetic Fluids, J. Magn. Magn.Mater., 1987, vol. 65, pp. 273-276.

    Google Scholar 

  27. Ibrahim, M.M., Edwards, G., Seehra, M.S., et al., Magnetism and Spin Dynamics of Nanoscale FeOOH Particles, J. Appl. Phys., 1994, vol. 75, no. 10, pp. 5873-5877.

    Google Scholar 

  28. Zysler, R., Fiorani, D., Dormann, J.L., and Testa, A.M., Magnetic Properties of Ultrafine ?-Fe2O3 Antiferromagnetic Particles, J. Magn. Magn. Mater., 1994, vol. 133, pp. 71-73.

    Google Scholar 

  29. Gazeau, F., Bacri, J.C., Gendron, F., et al., Magnetic Resonance of Ferrite Nanoparticles: Evidence of Surface Effects, J. Magn. Magn. Mater., 1998, vol. 186, pp. 175-183.

    Google Scholar 

  30. Gazeau, F., Shilov, V., Bacri, J.C., et al., Magnetic Resonance of Nanoparticles in a Ferrofluid: Evidence of Thermofluctuation Effects, J. Magn. Magn. Mater., 1999, vol. 202, pp. 535-546.

    Google Scholar 

  31. Bulte, J.W.M., Brooks, R.A., Moskowitz, B.M., et al., Relaxometry, Magnetometry, and EPR Evidence for Three Magnetic Phases in the MR Contrast Agent MION-46L, J. Magn. Magn. Mater., 1999, vol. 194, pp. 217-225.

    Google Scholar 

  32. Koksharov, Yu.A., Gubin, S.P., Kosobudsky, I.D., et al., Low-Temperature Electron Paramagnetic Resonance Anomalies in Fe-Based Nanoparticles, J. Appl. Phys., 2000, vol. 88, no. 1, pp. 587-592.

    Google Scholar 

  33. Koksharov, Yu.A., Gubin, S.P., Kosobudsky, I.D., et. al., Electron-Paramagnetic-Resonance Spectra near Spin-Glass Transition in Iron-Oxide Nanoparticles, Phys.Rev. B: Condens. Matter, 2001, vol. 63, pp. 12407-12410.

    Google Scholar 

  34. Koksharov, Yu.A., Pankratov, D.A., Gubin, S.P., et al., Electron Paramagnetic Resonance of Ferrite Nanoparticles, J. Appl. Phys., 2001, vol. 89, no. 4, pp. 2293-2298.

    Google Scholar 

  35. Nagata, K. and Ishihara, A., ESR of Ultrafine Magnetic Particles, J. Magn. Magn. Mater., 1992, vols. 104-107, pp. 1571-1573.

    Google Scholar 

  36. Sohn, B.H., Cohen, R.E., and Papaefthymiou, G.C., Magnetic Properties of Iron Oxide Nanoclusters within Microdomains of Block Copolymers, J. Magn. Magn.Mater., 1998, vol. 182, pp. 216-224.

    Google Scholar 

  37. Zhang, L., Papaefthymiou, G.C., and Ying, J.Y., Size Quantization and Interfacial Effects on a Novel ?-Fe2O3/SiO2 Magnetic Nanocomposite via Sol-Gel Matrix-Mediated Synthesis, J. Appl. Phys., 1997, vol. 81, no. 10, pp. 6892-6900.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurkov, G.Y., Gubin, S.P., Pankratov, D.A. et al. Iron(III) Oxide Nanoparticles in a Polyethylene Matrix. Inorganic Materials 38, 137–145 (2002). https://doi.org/10.1023/A:1014013110541

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014013110541

Keywords

Navigation