Skip to main content
Log in

Fluorescence Studies of the Acetylcholine Receptor: Structure and Dynamics in Membranes and Cells

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The nicotinic acetylcholine receptor (AChR) is the archetype member of the superfamily of ligand-gated ion channels that mediate fast intercellular communication in response to endogenous neurotransmitters. Here I review a series of biophysical studies on the AChR protein, with particular focus on the interactions of the macromolecule with its lipid microenvironment. Fluorescence recovery after photobleaching and phosphorescence anisotropy studies of the membrane-embedded AChR have contributed to our understanding of the translational and rotational dynamics of this protein in synthetic lipid bilayers and in the native membrane. Electron spin resonance studies led to the discovery of a lipid fraction in direct contact with the AChR with rotational dynamics 50-fold slower than that of the bulk lipids. This lipid belt region around the AChR molecule has since been intensively studied with the aim to define its possible role in the modulation of receptor function. The polarity and molecular dynamics of solvent dipoles—mainly water—in the vicinity of the lipids in the AChR membrane have been studied exploiting the amphiphilic fluorescent probe Laurdan's exquisite sensitivity to the phase state of the membrane, and Förster-type resonance energy transfer (FRET) was introduced to characterize the receptor-associated lipid microenvironment. FRET was used to discriminate between the bulk lipid and the lipid belt region in the vicinity of the protein. Further refinement of this topographical information was provided by the parallax method using phospholipid spin labels. The AChR-vicinal lipid is in a liquid-ordered phase and exhibits a higher degree of order than the bulk bilayer lipid. Changes in FRET efficiency induced by fatty acids, phospholipid, and cholesterol also led to the identification of discrete sites for these lipids on the AChR protein. I also illustrate the extension of Laurdan fluorescence studies to intact living cells heterologously expressing AChR in a brief section devoted to recent studies using two-photon fluorescence microscopy. The spatial resolution afforded by the two-photon optical sectioning of the cell in combination with the advantageous spectroscopic properties of Laurdan are exploited to obtain information on the physical state of the lipid environment of the membrane. Finally, the application of site-specific labeling and steady-state fluorescence spectroscopy to probe the location of AChR membrane-embedded domains is illustrated. The topography of the pyrene-labeled Cys residues in transmembrane domains αM1, αM4, γM1, and γM4 with respect to the membrane was determined by differential fluorescence quenching with lipid-resident spin-labeled probes. Cys residues were found to lie in a shallow position. For M4 segments, this is compatible with a linear α-helical structure, but not so for M1, for which “classical” models locate Cys residues at the center of the hydrophobic stretch. The transmembrane topography of M1 can be rationalized on the basis of the presence of a substantial amount of nonhelical structure and/or of kinks attributable to the occurrence of the evolutionarily conserved proline residues. The latter is a striking feature of M1 in the AChR and all members of the rapid ligand-gated ion channel superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. J. Barrantes (Ed.) (1998) The Nicotinic Acetylcholine Receptor: Current Views and Future Trends, Springer Verlag, Berlin/Heidelberg, and Landes Georgetown, TX.

    Google Scholar 

  2. A. Reynolds and A. Karlin (1978) Biochemistry 17, 2035–2038.

    Google Scholar 

  3. J. Lindstrom, J. P. Merlie, and G. Yogeeswaram (1979) Biochemistry 18, 4465–4470.

    Google Scholar 

  4. M. A. Raftery, M. W. Hunkapiller, C. D. Strader, and L. E. Hood (1980) Science 208, 1454–1457.

    Google Scholar 

  5. J. Giraudat, C. Montecucco, R. Bisson, and J.-P. Changeux (1985) Biochemistry 24, 3121–3127.

    Google Scholar 

  6. T. Tobimatsu, Y. Fujita, K. Fukuda, K. Tanaka, Y. Mori, T. Konno, M. Mishina, and S. Numa (1987) FEBS Lett. 222, 56–62.

    Google Scholar 

  7. M. P. Blanton and H. H. Wang (1991) Biochim. Biophys. Acta 1067, 1–8.

    Google Scholar 

  8. M. P. Blanton and J. B. Cohen (1992) Biochemistry 31, 3738–3750.

    Google Scholar 

  9. M. P. Blanton and J. B. Cohen (1994) Biochemistry 33, 2859–2872.

    Google Scholar 

  10. R. A. Chavez and Z. W. Hall (1992) J. Cell Biol. 116, 385–393.

    Google Scholar 

  11. M. Noda, H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyotani, T. Hirose, M. Asai, H. Takashima, S. Inayama, T. Miyata, and S. Numa (1983) Nature 299, 793–797.

    Google Scholar 

  12. N. Unwin (1993) J. Mol. Biol. 229, 1101–1124.

    Google Scholar 

  13. N. Unwin (1995) Nature 373, 37–43.

    Google Scholar 

  14. M. O. Ortells, G. E. Barrantes, and F. J. Barrantes (1998) in F. J. Barrantes (Ed.), The Nicotinic Acetylcholine Receptor: Current Views and Future Trends, Springer Verlag, Berlin/Heidelberg, and Landes, Georgetown, TX, pp. 85–108.

    Google Scholar 

  15. J. P. Changeux and S. J. Edelstein (1998) Neuron 21, 959–980.

    Google Scholar 

  16. S. J. Opella, F. M. Marassi, J. J. Gesell, A. P. Valente, Y. Kim, M. Oblatt-Montal, and M. Montal (1999) Nature Struct. Biol. 6, 374–379.

    Google Scholar 

  17. V. S. Pashkov, I. V. Maslenikov, L. D. Tchikin, R. G. Efremov, V. T. Ivanov, and A. S. Arseniev (1999) FEBS Lett. 457, 117–121.

    Google Scholar 

  18. M. P. Blanton, E. A. McCardy, A. Huggins, and D. Parikh (1998) Biochemistry 37, 14545–14555.

    Google Scholar 

  19. J. E. Baenziger and N. Méthot (1996) J. Biol. Chem. 270, 29129–29137.

    Google Scholar 

  20. J. Corbin, N. Méthot, H. H. Wang, J. E. Baenziger, and M. P. Blanton (1998) J. Biol. Chem. 273, 771–777.

    Google Scholar 

  21. A. A. Lugovskoy, I. V. Maslennikov, Y. N. Utkin, V. I., Tsetlin, J. B. Cohen, and A. S. Arseniev (1998) Eur. J. Biochem. 255, 455–461.

    Google Scholar 

  22. P. F. Williamson, B. Bonev, F. J. Barrantes, and A. Watts (2000) Biophys. J. 78, 147A.

    Google Scholar 

  23. D. Marsh and F. J. Barrantes (1978) Proc. Natl. Acad. Sci. USA 75, 4329–4333.

    Google Scholar 

  24. R. J. Bloch and J. S. Morrow (1989) J. Cell Biol. 108, 481–494.

    Google Scholar 

  25. D. Marsh, A. Watts, and F. J. Barrantes (1981) Biochim. Biophys. Acta 645, 97–101.

    Google Scholar 

  26. A. Rousselet, P. F. Devaux, and K. W. Wirtz (1979) Biochem. Biophys. Res. Commun. 90, 871–877.

    Google Scholar 

  27. J. F. Ellena, M. A. Blazing, and M. G. McNamee (1983) Biochemistry 22, 5523–5535.

    Google Scholar 

  28. M. Epstein and E. Racker (1978) J. Biol. Chem. 253, 6660–6662.

    Google Scholar 

  29. E. L. Ochoa, A. W. Dalziel, and M. G. McNamee (1983) Biochim. Biophys. Acta 727, 151–162.

    Google Scholar 

  30. M. Criado, H. Eibl, and F. J. Barrantes (1982) Biochemistry 21, 3622–3629.

    Google Scholar 

  31. M. Criado, H. Eibl, and F. J. Barrantes (1984) J. Biol. Chem. 259, 9188–9198.

    Google Scholar 

  32. O. T. Jones, J. H. Eubanks, J. P. Earnest, and M. G. McNamee (1988) Biochemistry 27, 3733–3742.

    Google Scholar 

  33. T. M. Fong and M. G. McNamee (1986) Biochemistry 25, 830–840.

    Google Scholar 

  34. S. E. Rankin, G. H. Addona, M. A. Kloczewiak, B. Bugge, and K. W. Miller (1997) Biophys. J. 73, 2446–2455.

    Google Scholar 

  35. M. Dreger, M. Krauss, A. Herrmann, and F. Hucho (1997) Biochemistry 36, 839–847.

    Google Scholar 

  36. P. G. Saffman and M. Delbrück (1975) Proc. Natl. Acad. Sci. USA 72, 2035–2038.

    Google Scholar 

  37. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb (1976) Biophys. J. 16, 1055–1069.

    Google Scholar 

  38. D. W. Tank, E.-S. Wu, and W. W. Webb (1982) J. Cell Biol. 92, 207–212.

    Google Scholar 

  39. M.-M. Poo (1982) Nature 295, 332–334.

    Google Scholar 

  40. D. Axelrod, P. M. Ravdin, and T. R. Podleski (1978) Biochim. Biophys. Acta 511, 23–38.

    Google Scholar 

  41. D. Axelrod, A. Wright, W. W. Webb, and A. Horitz (1979) Biochemistry 17, 3604–3609.

    Google Scholar 

  42. M. Bartholdi, F. J. Barrantes, and T. M. Jovin (1981) Eur. J. Biochem. 120, 389–387.

    Google Scholar 

  43. A. Rousselet and P. F. Devaux (1977) Biochem. Biophys. Res. Commun. 78, 448–454.

    Google Scholar 

  44. F. J. Barrantes, D. C. Neugebauer, and H. P. Zingsheim (1980) FEBS Lett. 112, 73–78.

    Google Scholar 

  45. M. M. S. Lo, P. B. Garland, J. Lamprecht, and E. A. Barnard (1980) FEBS Lett. 111, 407–412.

    Google Scholar 

  46. A. Rousselet, J. Cartaud, and P. F. Devaux (1981) Biochim. Biophys. Acta 648, 169–185.

    Google Scholar 

  47. T. Parasassi, G. De Stasio, A. d'Ubaldo, and E. Gratton (1990) Biophys. J. 57, 1179–1186.

    Google Scholar 

  48. T. Parasassi, G. De Stasio, G. Ravagnan, R. M. Rusch, and E. Gratton (1991) Biophys. J. 60, 179–189.

    Google Scholar 

  49. S. S. Antollini, M. A. Soto, I. Bonini de Romanelli, C. Gutierrez-Merino, P. Sotomayor, and F. J. Barrantes (1996) Biophys. J. 70, 1275–1284.

    Google Scholar 

  50. S. S. Antollini and F. J. Barrantes (1998) Biochemistry 37, 16653–16662.

    Google Scholar 

  51. L. P. Zanello, E. Aztiria, S. S. Antollini, and F. J. Barrantes (1996) Biophys. J. 70, 2155–2164.

    Google Scholar 

  52. T. M. Fong and M. G. McNamee (1987) Biochemistry 26, 3871–3880.

    Google Scholar 

  53. C. Sunshine and M. G. McNamee (1994) Biochim. Biophys. Acta 1191, 59–64.

    Google Scholar 

  54. A. Chattopadhyay and E. London (1987) Biochemistry 26, 39–45.

    Google Scholar 

  55. T. J. Andreasen, D. R. Doerge, and M. G. McNamee (1979) Arch. Biochem. Biophys. 194, 468–480.

    Google Scholar 

  56. T. J. Andreasen and M. G. McNamee (1980) Biochemistry 19, 4719–4726.

    Google Scholar 

  57. C. B. Bouzat and F. J. Barrantes (1993) Receptors Channels 1, 251–258.

    Google Scholar 

  58. M. S. Braun and D. A. Haydon (1991) Pflugers Arch. 418, 62–67.

    Google Scholar 

  59. C. B. Bouzat and F. J. Barrantes (1993) NeuroReport 4, 143–146.

    Google Scholar 

  60. C. B. Bouzat and F. J. Barrantes (1993) Mol. Neuropharm. 3, 109–116.

    Google Scholar 

  61. C. B. Bouzat and F. J. Barrantes (1996) J. Biol. Chem. 271, 25835–25841.

    Google Scholar 

  62. O. T. Jones and M. G. McNamee (1988) Biochemistry 27, 2364–2374.

    Google Scholar 

  63. V. Narayanaswami and M. G. McNamee (1993) Biochemistry 32, 12420–12427.

    Google Scholar 

  64. Förster Th. (1948) Ann. Phys. (Leipzig) 2, 55–75.

    Google Scholar 

  65. R. Massol, S. S. Antollini, and F. J. Barrantes (2000) Neuropharmacology 39, 1095–1106.

    Google Scholar 

  66. A. M. Roccamo, M. F. Pediconi, E. L. Aztiria, L. Zanello, A. Wolstenholme, and F. J. Barrantes (1999) Eur. J. Neurosci. 11, 1615–1623.

    Google Scholar 

  67. T. Parasassi, E. Gratton, W. M. Yu, P. Wilson, and M. Levi (1997) Biophys. J. 72, 2413–2429.

    Google Scholar 

  68. S. W. Hell (1997) in J. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy; Nonlinear and Two-Photon-Induced Fluorescence, Plenum Press, New York, Vol. 5, pp. 361–426.

    Google Scholar 

  69. F. J. Barrantes, S. S. Antollini, M. P. Blanton, and M. Prieto (2000) J. Biol. Chem. 275, 37333–37339.

    Google Scholar 

  70. S. S. Lehrer (1971) Biochemistry 10, 3254–3263.

    Google Scholar 

  71. M. O. Ortells and G. G. Lunt (1996) Protein Eng. 9, 51–59.

    Google Scholar 

  72. D. del Camino, M. Holmgren, Y. Liu, and G. Yellen (2000) Nature 403, 321–325.

    Google Scholar 

  73. K. Brejc, W. J. van Dijk, R. V. Klaassen, M. Schuurmans, J. van der Oost, A. B. Smit, and T. K. Sixma (2001) Nature 411, 269–276.

    Google Scholar 

  74. A. B. Smit, N. I. Syed, D. Schaap, J. van Minnen, J. Klumpermank, K. S. Kits, H. Lodder, R. C. van der Schors, R. Â. van Elk, B. Sorgedrager, K. Æ. Brejc, T. K. Sixma, and W. P. M. Geraerts (2001) Nature 411, 261–268.

    Google Scholar 

  75. A. Cha, G. E. Snyder, P. R. Selvin, and F. Bezanilla (1999) Nature 402, 809–813.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrantes, F.J. Fluorescence Studies of the Acetylcholine Receptor: Structure and Dynamics in Membranes and Cells. Journal of Fluorescence 11, 273–285 (2001). https://doi.org/10.1023/A:1013918822601

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013918822601

Navigation