Skip to main content
Log in

Nonlinearity in Fluid Resonances

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper reviews the simplest mathematical theories that have been advanced to describe the effects of nonlinearity on fluid resonance in two paradigm situations, namely gas oscillating in a container and water sloshing in a tank. These configurations illustrate what can happen when nonlinearity competes with geometrical asymmetry, dispersion or various kinds of damping in limiting the resonant response. In all situations the qualitative form of the response depends crucially on whether or not the natural frequencies of the system are rationally related to each other.

Sommario. Questo lavoro passa in rassegna le più semplici teorie matematiche disponibili per la descrizione degli effetti delle nonlinearità sulla risonanza dei fluidi in due situazioni paradigmatiche, un gas oscillante in un recipiente e l'acqua oscillante in una vasca. Queste configurazioni illustrano le situazioni che possono verificarsi quando le nonlinearità competono con l'asimmetrica geometrica, la dispersione o diversi tipi di smorzamento, nel limitare la risposta risonante. In tutte le situazioni, gli aspetti qualitativi della risposta dipendono in modo cruciale dall'esistenza o meno di rapporti razionali fra le frequenze naturali del sistema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ueda, Y., ‘Survey of regular and chaotic phenomena in the forced Duffing oscillator’ Chaos, Solitons and Fract. 1 (1991) 199–231.

    Google Scholar 

  2. Chester, W., ‘Resonant oscillations in closed tubes’ J. Fluid Mech. 18 (1964) 44–64.

    Google Scholar 

  3. Chester, W., ‘Resonant oscillations of a gas in an open ended tube’ Proc. R. Soc. Lond. A 377 (1981) 499–467.

    Google Scholar 

  4. Chester, W., ‘Resonant oscillations of water waves’ Proc. R. Soc. Lond. A 306 (1968) 5–22.

    Google Scholar 

  5. Jiminez, J., ‘Nonlinear gas oscillations in pipes. Part I. Theory’ J. Fluid Mech. 59 23–46.

  6. Aranha, J.A., Yue, D.K.P. and Mei, C.C., ‘Nonlinear waves near a cut-off frequency in an acoustic duct – a numerical study’ J. Fluid Mech. 121 (1982) 465–485.

    Google Scholar 

  7. Miles, J.W., ‘On Faraday waves’ J. Fluid Mech. 248 (1993) 671–683.

    Google Scholar 

  8. Moiseyev, N.N., ‘On the theory of nonlinear vibrations of a liquid of finite volume’ Prikl. Mat. Mech. 22 (1958) 612–621.

    Google Scholar 

  9. Waterhouse, D., ‘Resonant sloshing near a critical depth’ J. Fluid Mech. 281 (1994) 313–318.

    Google Scholar 

  10. Taylor, G.I., ‘An experimental study of standing waves’ Proc. Roy. Soc. Lond. A 218 (1953) 44–59.

    Google Scholar 

  11. Kobine, J., Private communication.

  12. Berlot, R.R., ‘Production of rotation in a confined liquid through translational motion of the boundaries’ Trans. ASME J. Appl. Mech. 81 (1959) 513–516.

    Google Scholar 

  13. Hutton, R.E., ‘Fluid particle motion during rotary sloshing’ Trans. ASME J. Appl.Mech. 31 (1964) 123–130.

    Google Scholar 

  14. Miles, J.W., ‘Resonantly forced surface waves in a circular cylinder’ J. Fluid Mech. 149 (1984) 15–31.

    Google Scholar 

  15. Ilgamov, M.A., Zaripov, R.G., Galiullin, R.G. and Repin, V.B., ‘Nonlinear oscillations of a gas in a tube’ Appl. Mech. Rev. 49 (1996) 137–154.

    Google Scholar 

  16. Chester, W., ‘Acoustic resonance in spherically symmetric waves’ Proc. R. Soc. Lond. A 434 (1991) 459–463.

    Google Scholar 

  17. Peake, M.R., ‘Degeneracy in acoustic resonance’ D.Phil. Thesis, Oxford University.

  18. Aganin, A.A., Ilgamov, M.A. and Smirnova, E.T., ‘Development of longitudinal gas oscillations in a closed tube’ J. Sound Vibrat. 195 (1996) 359–374.

    Google Scholar 

  19. Keller, J.J., ‘Resonant oscillations in open tubes’ Z. Angew. Math. Phys. 28 (1977) 237–263.

    Google Scholar 

  20. Wu, G.M., ‘An asymptotic expansion method for equations that arise in resonant forced oscillations’ MSc Thesis, Oxford University.

  21. Ockendon, H., Ockendon, J.R., Chester, W. and Peake, M.R., ‘Geometric effects in resonant gas oscillations’ J. Fluid Mech. 257 (1993) 201–217.

    Google Scholar 

  22. Keller, J.J., ‘Nonlinear acoustic resonances in shock tubes with varying cross-sectional area’ Z. Angew. Math. Phys. 28 (1977) 107–122.

    Google Scholar 

  23. Chester, W., ‘Nonlinear resonant oscillations of a gas in a tube of varying cross-section’ Proc. Roy. Soc. Lond. A 444 (1994) 591–604.

    Google Scholar 

  24. Ilinski, Y.A., Liphens, B., Lucas, T.S., Van Doren, T.W. and Zabolotskaya, E.A., ‘Nonlinear standing waves in an acoustical resonator’ J. Acoust. Soc. Am. 104 (1998) 2664–2674.

    Google Scholar 

  25. Ockendon, H., Ockendon, J.R. and Johnson, A.D., ‘Resonant sloshing in shallow water’ 167 (1986) 465–479.

    Google Scholar 

  26. Chester, W. and Bones, J.A., ‘Resonant oscillations of water waves. II. Experiment’ Proc. R. Soc. Lond. A 306 (1968) 23–39.

    Google Scholar 

  27. Lepelletier, T.G. and Raichlen, F., ‘Nonlinear oscillation in rectangular tanks’ J. Eng. Mech. 114 (1988) 1–23.

    Google Scholar 

  28. Ockendon, H., Ockendon, J.R. and Waterhouse, D.D., ‘Multimode resonances in fluids’ J. Fluid Mech. 315 (1996) 317–344.

    Google Scholar 

  29. Cox, E.A. and Mortell, M.P., ‘The evolution of resonant acoustic oscillations with damping’ Proc. Roy. Irish Acad. A 89 (1989) 147–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ockendon, H., Ockendon, J. Nonlinearity in Fluid Resonances. Meccanica 36, 297–321 (2001). https://doi.org/10.1023/A:1013911407811

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013911407811

Navigation