Skip to main content
Log in

Physical–Chemical Properties, Physiological Activity, and Usage of Alginates, the Polysaccharides of Brown Algae

  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

This review summarizes data on alginates, polysaccharides isolated from brown algae. Their raw sources, chemical structure, and physical–chemical properties are discussed briefly. This paper is mainly focused on the physiological activity and usage of alginates in food and pharmaceutical industries. The data on alginate toxicity and necessary safety measures are also presented. The capability of alginates to bind and eliminate heavy metals and radionuclides from animal and human organisms is discussed. This paper also deals with the effects of alginates on the metabolism of lipids, carbohydrates, etc., and their usage in medicine, dietetics, and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aminina, N.M. and Podkorytova, A.V., Alginates: Composition, Properties, and Usage, Izv. TINRO, 1995, vol. 118, pp. 130-137.

    Google Scholar 

  2. Aminina, N.M., Podkorytova, A.V., and Korzun, V.N., Effects of Alginic Acid and Its Salts on the Accumulation of 85Sr and 137Cs in Rats, Radiats. Biol. Radioekologiya, 1994, vol. 34, no. 4–5, pp. 703-712.

    Google Scholar 

  3. Baranov, V., A Fruit-Berry Covering of Pies and Cakes with Sodium Alginate, Obshchestv. Pitanie, 1980, no. 3, pp. 12-13.

  4. Buldakov, A.S., Pishchevye dobavki. Spravochnik. (Food Additives. Handbook), St. Petersburg: Ut, 1996.

    Google Scholar 

  5. Glyantsev, S.P., Annaev, A.G., and Savvina, T.V., Morphological Grounds for the Choice of Composition and Structure of Bioactive Mixture with Sodium Alginate Basis for the Treatment of Wounds, Byull. Eksperim. Biol. i Med., 1993, no. 1, pp. 65-67.

  6. Dil'barkhanov, R.D., Yaroshenko, E.B., and Unerbaev, B., Alginates and Their Usage in Pharmacology, Med. Zh. Kazakhstana, 1978, no. 1, pp. 40-43.

  7. Dolmatova, M.Yu. and Panteleeva, A.P., Studies of Some Ion Exchange Properties of Alginic Acid and Its Interaction with Bi-and Trivalent Cations, Radiokhimiya, 1968, no. 3, pp. 15-19.

  8. Dubrovina, Z.V., Dolmatova, M.Yu., and Malkin, P.M., Protective Effect of Alginic Acid and Sodium Alginate on the Uptake of Radioactive Elements by Alimentary Canal, Gigiena i Sanitariya, 1969, no. 5, pp. 105-107.

  9. II'in, L.A., Likhtarev, I.A., Razumovskii, N.O., et al., Efficiency of Some Sorbents for the Inhibition of Resorption of Radioactive Strontium in the Experiment, Med. Radiol., 1976, vol. 21, no. 2, pp. 42-49.

    Google Scholar 

  10. Korzun, V.N., The Role of Food Substances in Accumulation of 137Cs and 90Sr in the Organism, Vrach. Delo, 1980, no. 2, pp. 99-101.

  11. Korzun, V.N., Voronova, Yu.G., Parats, A.N, et al., Alginates in Prophylaxis of Internal Irradiation by 90Sr, Med. Radiol., 1992, no. 5–6, pp. 31-34.

  12. Korotaev, G.K., Chlenov, M.A., Kir'anov, A.V, et al., A Modified Sodium Alginate is a High-Performance Drug for Elimination of Radioactive Strontium, Radiobiologiya, 1992, vol. 32, no.l, pp. 126-129.

    Google Scholar 

  13. Miroshnichenko, V.A., Yansons, T,Ya., Polushin, O.G., et al., A Differentiating Approach to a Choice of Management Strategy for the Treatment of Gastroduodenal Pathology Using Bioactive Compounds from Marine Organisms, Novye biomeditsinskie tekhnologii s ispol'sovaniem bologicheski aktivnykh dobavok: Mater. Ross. Nauchn. Konf. (New Biomedical Technologies Using Bioactive Additives. Proc. All-Russian Conference), Vladivostok: IMKVL Siberian Branch, Ross. Akad. Med. Nauk, 1998, pp. 146-150.

    Google Scholar 

  14. Panteleeva, A.P., Some Principles of Interaction of Alginic Acid with Metallic Cations, in Radiatsionnaya i khimicheskaya ekologiya gidrobiontov (Radiation and Chemical Ecology of Aquatic Organisms), Kiev: Naukova Dumka, 1972, pp. 112-115.

    Google Scholar 

  15. Pashinina, E.I., Sherman, L.B., and Zhil'tsova, G.I., Ispol'zovanie al'ginata natriya v kosmeticheskikh izdeliyakh: Obsor (Usage of Sodium Alginate in Cosmetology: A Review), Moscow: TsNIIpishcheprom, 1972.

    Google Scholar 

  16. Podkorytova, A.V. and Aminina, N.M., Usage of Alginate-Containing Foodstuff in Therapeutic and Prophylactic Dietology, Novye biomeditsinskie tekhnologii s ispol'sovaniem bologicheski aktivnykh dobavok: Mater. Ross. Nauchn. Konf. (New Biomedical Technologies Using Bioactive Additives. Proc. All-Russian Conference), Vladivostok: IMKVL Siberian Branch, Ross. Akad. Med. Nauk, 1998, pp. 205-209.

    Google Scholar 

  17. Razumovskii, N.O. and Torchinskaya, O.L., A Potential for Application of Food Additives for Prevention of 89Sr Accumulation in the Organism, Med. Radiol., 1967, no. 4, pp. 88-89.

  18. Savitskaya, I.M., Trial of a Local Hemostatic with Alginate Base, Klin. Khirurgiya, 1986, no. 3, pp. 39-40.

  19. Savchenko, O.V., Kropotov, A.V., and Khotimchenko, Yu.S., Protective Effect of Sodium Alginate on Lead Intoxication in Laboratory Animals, Biol. Morya, 1994, no. 2, pp. 163-167.

  20. Samoilova, L.N., Gagaeva, E.V., Annaev, A.G., et al., Sovremennye napravleniya sozdaniya i otsenki kachestva gotovykh lekarstvennykh preparatov antibiotikov i antimikrobnykh veshchestv (Modern Approaches of Developing and Quality Rating of Antibiotics and Antimicrobial Drugs), Moscow: Meditsina, 1990, p. 125.

    Google Scholar 

  21. Slezka, I.E., Miroshnichenko, V.A., Vostrikova, O.G, et al., Applications of Bioactive Compounds from Marine Organisms in Atherosclerosis Prophylaxis in Children, Novye biomeditsinskie tekhnologii s ispol'sovaniem bologicheski aktivnykh dobavok: Mater. Ross. Nauchn. Konf. (New Biomedical Technologies Using Bioactive Additives. Proc. All-Russian Conference), Vladivostok: IMKVL Siberian Branch, Ross. Akad. Med. Nauk, 1998, pp. 90-94.

    Google Scholar 

  22. Usov, A.I., Alginic Acids and Alginates: Methods of Analyzing and Determining of Composition and Structure, Usp. Khimii, 1999, vol. 68, no. 11, pp. 1051-1061.

    Google Scholar 

  23. Usov, A.I. and Bilan, A.I., Alga Polysaccharides. 49. Extraction of Alginate, Sulphated Xylogalactane, and Florid Starch from the Calcareous Red Alga Bosiella cretacea (P. et R.). Johansen (Rhodophyta, Corallinacea), Bioorgan. Khim., 1996, vol. 22, no. 2, pp. 126-131.

    Google Scholar 

  24. Khotimchenko, Yu.S., Kovalev, V.V., Savchenko, O.V., and Kropotov, A.V., Detoxic Effect of Calcium Alginate on Lead Intoxication in Laboratory Animals, V Ross. Nats. KongressChelovek i lekarstvo: Tez. dokl. (Proc. V Rus. Nat. Cong. “The Man and the Remedy”), Moscow, 1998, p. 632.

  25. Khotimchenko, Yu.S., Khasina, E.I., Shevtsova, O.I., et al., Curative Effects of Polysaccharides from Marine Organisms on Experimentally Induced Toxic Hepatitis, Dal'nevost. Med. Zh., 1997, no. 4, pp. 58-59.

  26. Khotimchenko, Yu.S., Shevtsova, O.I., Tyupeleev, P.A,, and Khasina, E.I., Effects of Low Etherized Pectin and Calcium Alginate on Acute Toxic Hepatitis, V Ross. Nats. KongressChelovek i lekarstvo: Tez. dokl. (Proc. V Rus. Nat. Cong. “The Man and the Remedy”), Moscow, 1998, p. 632-633.

  27. Khotimchenko, Yu.S., Khasina, E.I., Kovalev, V.V., et al., Effects of Food Non-Starch Polysaccharides on Experimentally Induced Toxic Hepatitis, Vopr. Pitaniya, 2000, vol. 69, nos. 1–2, pp. 22-26.

    Google Scholar 

  28. Alshamkhani, A. and Duncan, R., Synthesis, Controlled-Release Properties and Antitumor Activity of Alginate-cis-Aconityl-Daunomycin Conjugates, Int. J. Pharm., 1995, vol. 122, nos. 1–2, pp. 107-199.

    Google Scholar 

  29. Anderson, D.M.W., Brydon, W.G., Eastwood, M.A., and Sedgwick, D.M., Dietary effects of Propylene Glycol Alginate in Humans, Food Addit. Contam., 1991, vol. 8, no. 3, pp. 225-236.

    Google Scholar 

  30. Anderson, D.M.W., Brydon, W.G., Eastwood, M.A., and Sedgwick, D.M., Dietary effects Of Sodium Alginate in Humans, Food Addit. Contam., 1991, vol. 8, no. 3, pp. 237-248.

    Google Scholar 

  31. Bogentoff, C.B., Ger. Patent 2722484, 1981.

  32. Borgo, E., Can. Patent CA 1176984, 1984.

  33. Bowersock, T.L., Hogenesch, H., Suckow, M., et al., Oral Vaccination of Animals with Antigens Encapsulated in Alginate Microspheres, Vaccine, 1999, vol. 17, nos. 13–14, pp. 1804-1811.

    Google Scholar 

  34. Brailski, Kh. and Dimitrov, B., Treatment of Duodenal Ulcer with the Bulgarian Preparation “Gastralgin”, Vutr. Boles., 1987, vol. 26, no. 2, pp. 79-82.

    Google Scholar 

  35. Burgi-Saville, M.E., Reut, B., Gerber, H., et al., Alginate Gel Culture Allows the Retention of Extracellular Matrix and Follicular Structure of Rat Thyroid Tissue, But Does Not Lead to the Formation of Follicles by FRTL-5 Cells, Thyroid, 1998, vol. 8, no. 12, pp. 1147-1155.

    Google Scholar 

  36. Carr, T.E.F. and Nolan, J., Inhibition of Absorption of Dietary Radiostrontium by Aluminum Phosphate Gel and Sodium Alginate in Rat, Nature, 1968, vol. 219, no. 5153, pp. 500-501.

    Google Scholar 

  37. Chandra, M. and Gandhi, I.S., Comparative Study of Alginate and Non-Alginate Antacids Concurrently Administered with H2 Antagonists in Cases of Duodenal Ulcer, Br. J. Clin. Pract., 1989, vol. 43, no. 3, pp. 97-101.

    Google Scholar 

  38. Cheshire, A.C. and Hallam, N.D., Environmental Role of Alginate in Durvillaea potatorum (Fucales, Phaeophyta), Phycologia, 1985, vol. 24, no. 2, pp. 147-153.

    Google Scholar 

  39. Chirita, A., Paun, C., Miu, C., et al., Rom. Patent RO 76076, 1983.

  40. Choi, Y.S., Hong, S.R., Lee, Y.M., et al., Study on Gelatin-containing Artificial Skin: I. Preparation and Characteristics of novel Gelatin-Algonate Sponge, Biomaterials, 1999, vol. 20, no. 5, pp. 409-417.

    Google Scholar 

  41. Constantinides, P., Carnis, A., and Werner, A., Antilipemic Activity of Sulfated Polysaccharides, Arch. Int. Pharmacodyn., 1954, vol. 99, pp. 334-345.

    Google Scholar 

  42. Currie, A.J. and Tervey, J.R., An Enzymic Method for the Assay of D-Mannuronan-C5-Epimerase Activity, Carbohyd. Res., 1982, vol. 107, no. 1, pp. 165-169.

    Google Scholar 

  43. Daigo, K., Wada, Y., Yamada, C., et al., Pharmacological Studies of Sodium Alginate. I. Protective Effect of Sodium Alginate on Mucous Membranes of Upper Gastrointestinal Tract, Yakugaku Zasshi., 1981, vol. 101, pp. 452-457.

    Google Scholar 

  44. Daigo, K., Yamaji, M., Yamada, C., et al., Curative Effect of Sodium Alginate on Experimental Hydrochloric Acid and Tetragastrin Induced Ulcer, Yakuri to Tiryo, 1982, vol. 10, pp. 4599-4607.

    Google Scholar 

  45. Davies, M.S., Flannery, M.C., and McCollum, C.N., Calcium Alginate as Haemostatic Swabs in Hip Fracture Surgery, J. R. Coll. Surg. Edinb., 1997, vol. 42, no. 1, pp. 31-32.

    Google Scholar 

  46. Doyle, J.M., Roth, T.P., Smith, R.M., et al., Effect of Calcium Alginate on Cellular Wound Healing Processes Modeled in vitro, J. Biomed. Mater. Res., 1996, vol. 32, no. 4, pp. 561-568.

    Google Scholar 

  47. Elliot, W.J. and Prisant, L.M., Drug Delivery System for Antihypertensive Agents, Blood Press. Monit., 1997, vol. 2, no. 1, pp. 53-60.

    Google Scholar 

  48. Fahrenbach, M.J., Riccardi, B.A., and Grant, W.C., Hypocholesterolemic Activity of Mucilaginous Polysaccharides in White Leghorn Cockerels, Proc. Soc. Exp. Biol. Med., 1966, vol. 123, pp. 321-326.

    Google Scholar 

  49. Forbes, D., Hodgson, M., and Hill, R., The Effect of Graviscon and Metoclopramid in Gastroesophageal Reflux in Children, J. Pediat. Gastroent. Nutr., 1986, vol. 5, pp. 556-559.

    Google Scholar 

  50. Fujihara, M., Iizima, N. Yamamoto, I., and Nagumo, T., Purification and Chemical and Physical Characterization of an Antitumor Polysaccharide from the Brown Seaweed Sargassum fulvellum, Carbohydr. Res., 1984, vol. 125, pp. 97-106.

    Google Scholar 

  51. Fujihara, M., Komiyama, K., Umezawa, I., and Nagumo, T., Antitumor Activity and Action Mechanism of Sodium Alginate Isolated from the Brown Seaweed Sargassum fulvellum, Chemotherapy (Tokyo), 1984, vol. 32, pp. 1004-1009.

    Google Scholar 

  52. Fujihara, M. and Nagumo, T., Effect of the Content of D-Mannuronic Acid and L-Guluronic Acid Blocks in Alginates on Antitumor Activity, Carbohydr. Res., 1992, vol. 224, pp. 343-347.

    Google Scholar 

  53. Fujihara, M. and Nagumo, T., An Influence of the Structure of Alginate on the Chemotactic Activity of Macrophages and the Antitumor Activity, Carbohydr. Res., 1993, vol. 243, pp. 211-216.

    Google Scholar 

  54. Gacesa, P., Alginate, Carbohydr. Polymers, 1988, vol. 8, no. 3, pp. 161-182.

    Google Scholar 

  55. Glicksman, M., Origin and Classification in Hydrocolloids, Food Hydrocolloids, Boca Raton: CRC Press, 1982, vol. 1, pp. 3-18.

    Google Scholar 

  56. Glicksman, M., Utilization of Seaweed Hydrocolloids, Hydrobiology, 1987, vol. 152, no. 5, pp. 31-47.

    Google Scholar 

  57. Growes, A.R. and Lawrence, J.C., Alginate Dressing as a Donor Site Hemostat, Ann. R. Coll. Surg. Engi., 1986, vol. 68, p. 27.

    Google Scholar 

  58. Hasan, S.S., Treatment of Moderate to Severe Reflux with an Alginate/Antacid Combination, Curr. Mod. Res. Opin., 1980, vol. 6, pp. 645-648.

    Google Scholar 

  59. Haug, A., Composition and Properties of Alginates, Norweg. Inst. Seaweed Reprt., 1964, no. 30, pp. 1-123.

  60. Haug, A., Larsen, B., and Smidsrod, O., Uronic Acid Sequence in Alginate from Different Sources, Carbohydrate Res., 1974, vol. 32, pp. 217-225.

    Google Scholar 

  61. Hesp, R. and Ramsbottom, B., Strontium Metabolism, Lenihan, J.M.A., et al., Eds., London, 1967, pp. 313-321.

  62. Heyraud, A., Rinaudo, M., and Rochas, C., Physical and Chemical Properties of Phycocolloids, Introduction to Applied Phycology, Akatsuka, I., Ed., The Hague: SPB Academic Publishing, 1990, pp. 151-176.

    Google Scholar 

  63. Hodgkinson, A., Nordin, B.E.C., Hambleton, J., and Oxby, C.B., Radiostrontium Absorption in Man. Suppression by Calcium and by Sodium Alginate, Can. Mod. Ass. J., 1967, vol. 97, no. 19, pp. 1139-1143.

    Google Scholar 

  64. Ikegami, S., Tsuchihashi, F., Harada, H., et al., Effects of Viscous Indigestible Polysaccharides on Pancreatic-Biliary Secretion and Digestive Organs in Rats, J. Nutr., 1990, vol. 120, no. 4, pp. 353-360.

    Google Scholar 

  65. Indergaard, M., From Ice Cream to Champagne: New applications for Alginates, Appl. Phycol. Forum, 1991, vol. 8, no. 1, pp. 2-4.

    Google Scholar 

  66. Ito, Y, and Chang, T.M., In Vitro Study of Multicellular Hepatocyte Spheroids Formed in Microcapsules, Artif. Organs, 1992, vol. 16, no. 4, pp. 422-427.

    Google Scholar 

  67. Ito, H. and Tsuchiya, Y., The Effect of Algal Polysaccharides on the Depressing of Plasma Cholesterol Levels in Rats, Proc. Int. Seaweed Symp., 1972, vol. 7, pp. 558-561.

    Google Scholar 

  68. Kalyanasundaram, S., Feinstein, S., Nicholson, J.P., et al., Coacervative Microspheres as Carriers of Recombinant Adenoviruses, Cancer Gene Ther., 1999, vol. 6, no. 2, pp. 107-112.

    Google Scholar 

  69. Kasloff, Z., The Medical and Dental Uses of Algae and Algal Products, Introduction to Applied Phycology, Akatsuka, I., Ed., The Hague: SPB Academic Publishing, 1990, pp. 401-406.

    Google Scholar 

  70. Katayama, H., Nishimura, T., Ochi, S., et al., Sustained Release Liquid Preparation Using Sodium Alginate for Eradication of Helicobacter pylori, Biol. Pharm. Bull., 1999, vol. 22, no. 1, pp. 55-60.

    Google Scholar 

  71. Katayama, S., Ohshita, J., Sugaya, K., et al., New Medicinal Treatment for Severe Gingivostomatitis, Int. J. Mol. Med., 1998, vol. 2, no. 6., pp. 675-679.

    Google Scholar 

  72. Kimura. Y., Watanabe, K., and Okuda, H., Effects of Soluble Sodium Alginate on Cholesterol Excretion and Glucose Tolerance in Rats, J. Ethnopharmacol., 1996, vol. 54, no. 1, pp. 47-54.

    Google Scholar 

  73. Kiriyama, S., Okazaki, Y., and Yoshida, A., Hypocholesterolemic Effect of Polysaccharide-Rich Foodstuffs in Cholesterol-Fed Rats, J. Nutr., 1969, vol. 97, pp. 383-388.

    Google Scholar 

  74. Klinkenberg-Knol, E.C., Festen, H.P., and Meuwissen, S.G., Pharmacological Management of Gastro-Oesophageal Reflux Disease, Drugs, 1995, vol. 49, no. 5, pp. 695-710.

    Google Scholar 

  75. Kostial, K., Vnucec, M., Tominac, C., and Simonovic, I., A Method for a Simultaneous Decrease of Strontium, Cesium, and Iodine Retention After Oral Exposure in Rats, Int. J. Radiat. Biol., 1980, vol. 37, no. 3, pp. 347-350.

    Google Scholar 

  76. Kulseng, B., Skjak-Braek, G., Ruan, L., et al., Transplantation of Alginate Microcapsules: Generation of Antibodies Against Alginates and Encapsulated Porcine Islet-like Cell Clusters, Transplantation, 1999, vol. 67, no. 7, pp. 978-984.

    Google Scholar 

  77. Le Luyer, B., Mougenot, J.F., Mashako, L., et al., Pharmacological Efficiency of Sodium Alginate Suspension on Gastro-Esophageal Reflux in Infants and Children, Arch. Pediatr., 1990, vol. 47, no. 1, pp. 65-68.

    Google Scholar 

  78. Lewis, J.C., Stanley, N.F., and Guist, G.G., Commercial Production and Applications of Algal Hydrocolloids, Algae and Human Affairs, Lembi, C.A. and Waaland, J.R., Eds., Cambridge Univ. Press, 1988, pp. 205-236.

  79. Light, J.M., Stookey, G.K., and Muhler, J.C., Effects of Sodium Alginate and Other Untested Polymers on Radiostrontium Retention in Rat, Proc. Soc. Exp. Med., 1970, vol. 133, no. 4, pp. 1259-1264.

    Google Scholar 

  80. Lim, F. and Sun, A.M., Microencapsulated Islets as Bioartificial Endocrine Pancreas, Science, 1980, vol. 210, no. 4472, pp. 908-910.

    Google Scholar 

  81. Liu, P. and Krishnan, T.R., Alginate-Pectin-poly-LLysine Particulate as a Potential Controlled Release Formulation, J. Pharm. Pharmacol., 1999, vol. 51, no. 2, pp. 141-149.

    Google Scholar 

  82. Mason, I., Millar, L.J., Sheikh, R.R., et al., The Management of Acid-Related Dyspepsia in General Practice: A Comparison of an Omerasole Versus an Antacid-Alginate/Ranitidine Management Strategy, Aliment. Pharmacol. Ther., 1998, vol. 12, no. 3, pp. 263-271.

    Google Scholar 

  83. McHurdy, G., A Multicentric Randomized Trial of Graviscon in Reflux Esophagitis, Sth. Med. J., 1978, vol. 71, suppl., pp. 16-21.

    Google Scholar 

  84. McNeely, W.H. and Kovacs, P., The Physiological Effects of Alginates and Xanthan Gum, Physiological Effects of Food Carbohydrates, Jeanes, A. and Hodge, J., Eds., Washington: American Chemical Society, 1975, pp. 269-281.

    Google Scholar 

  85. McNeely, W.H. and Pettitt, D.J., Algin, Industrial Gums: Polysaccharides and their Derivatives, Whistler, R.L. and BeMiller, J.N., Eds., New York: Academic, 1973, 2nd ed., pp. 1-50.

    Google Scholar 

  86. Mouecoucou, J., Villaume, C., Bau, H.M., et al., Renutrition apres ingestion de régimes comprenant 10% de protéines de soja associées a diverses concentrations d'alginate ou de carraghenate de sodium. Effets sur la croissance et les paramétres lipidiques chez le rat, Reprod. Nutr. Dev., 1991, vol. 31, pp. 377-388.

    Google Scholar 

  87. Nagashima, M., Azuma, M., Noguchi, S., et al., Large-Scale Preparation of Calcium Alginate Immobilized Yeast Cells and Its Application to Industrial Ethanol Production, Meth. Enzymol., 1987, vol. 136, pp. 394-405.

    Google Scholar 

  88. Nishide, E., Anzai, H., and Uchida, N. Effects of Alginate on the Ingestion and Excretion of Cholesterol in the Rat, J. Appl. Phycol., 1993, vol. 5, pp. 207-211.

    Google Scholar 

  89. Nishiya, M., Hareyama, H., Makinoda, S., and Fujimoto, S., A Study on the Hemostatic Effect of Sodium Alginate on Uterocervical Hemorrhage, Asia Oceanica J. Obstet. Gynaecol., 1994, vol. 20, no. 2, pp. 203-208.

    Google Scholar 

  90. Okazaki, M., Furuya, K., Tsukayama, K., and Nisizawa, K., Isolation and Identification of Alginic Acid from Calcareous Red Alga Serraticardia maxima, Bot. Mar., 1982, vol. 25, no. 3, pp. 123-131.

    Google Scholar 

  91. Onsoyen, E., Commercial Applications of Alginate, Carbohydr. Eur., 1996, vol. 14, pp. 26-30.

    Google Scholar 

  92. O'Sullivan, D.G., Sherman, I.W., and Phillips, D.E., The Role of Calcium Alginate Swabs Adenotonsillectomy, Clin. Otolaryngol., 1992, vol. 17, no. 5, pp. 403-405.

    Google Scholar 

  93. Otterlei, M., Ostgaard, K., Skjak-Braek, G., et al., Induction of Cytokine Production from Human Monocytes Stimulated with Alginate, J. Immunother., 1991, vol. 10, no. 4, pp. 286-291.

    Google Scholar 

  94. Painter, T.J., Algal Polysaccharides, The Polysaccharides, Aspinall, G.O., Ed., New York: Academic, 1983, vol. 2, pp. 195-285.

    Google Scholar 

  95. Park, J.K., Jin, Y.B., and Chang, H.N., Reusable Biosorbents in Capsules from Zoogloea ramigera Cells for Cadmium Removal, Biotechnol. Bioeng., 1999, vol. 63, no. 1, pp. 116-121.

    Google Scholar 

  96. Patrick, G., Inhibition of Strontium and Calcium Uptake by Rat Duodenal Slices. Comparison of Polyuronides and Related Substances, Nature, 1967, vol. 216, no. 5117, pp. 815-816.

    Google Scholar 

  97. Paul, T.M., Skoryna, S.C., and Waldron-Edward, D., Studies of Inhibition of Intestinal Absorption of Radioactive Strontium. V. Effect of Administration of Calcium Alginate, Can. Med. Ass. J., 1996, vol. 95, no. 19, pp. 553-557.

    Google Scholar 

  98. Pilnic, W. and Rombouts, F., Polysaccharides and Food Processing, Carbohydr. Res., 1985, vol. 142, pp. 93-105.

    Google Scholar 

  99. Rajaonarivony, M., Vauthier, C., Couarraze, G., et al., Development of a New Drug Carrier Made from Alginate, J. Pharm. Sci., 1993, vol. 82, no. 9, pp. 912-917.

    Google Scholar 

  100. Reckitt and Colman Products Ltd., Belg. Patent 858003, 1987.

  101. Rees, D.A., Polysaccharide Gels, Chem. Ind., 1972, vol. 19, pp. 630-635.

    Google Scholar 

  102. Rehm, B.H and Valla, S., Bacterial Alginates: Biosynthesis and Applications, Appl. Microbiol. Biotechnol., 1997, vol. 48, no. 3, pp. 281-288.

    Google Scholar 

  103. Reynolds, J.E.F. and Prasad, A.B., Martindale the Extra Pharmacopoeia, London: Pharmaceutical Press, 1982, 28th ed., p. 735.

    Google Scholar 

  104. Reynolds, J.E.F. and Prasad, A.B., Martindale the Extra Pharmacopoeia, London: Pharmaceutical Press, 1982, 28th ed., pp. 960-961.

    Google Scholar 

  105. Rossel, K.G. and Srivastava, L.M., Seasonal Variation in the Chemical Constituents of the Brown Algae Macrocystis integrifolia and Noveocystic luetkeana, Can. J. Bot., 1984, vol. 62, pp. 2229-2236.

    Google Scholar 

  106. Salvioli, G., Tambara, E., Gaetti, E., and Lugli, R., Chemico-Physical Property and Bile Acid Binding Capacity of Several Antacids, Minerva Dietol. Gastroenterol., 1989, vol. 35, no. 2, pp. 79-83.

    Google Scholar 

  107. Sandberg, A.S., Andersson, H., Bosaeus, I., et al., Alginate, Small Bowel Sterol Excretion, and Absorption of Nutrients in Ileostomy Subjects, Am. J. Clin. Nutr., 1994, vol. 60, no. 5, pp. 751-756.

    Google Scholar 

  108. Sato, S. and Tanbara, K., Distribution of Metals and Components of Polysaccharides in Laminaria japonica, Bull. Jap. Soc. Sci. Fish., 1980, vol. 46, no. 6, pp. 749-756.

    Google Scholar 

  109. Schoeters, G.E.R., Luz, A., and Van der Borght, O.L., 226Ra Induced Bone Cancers. The Effects of a Delayed Sodium Alginate Treatment, Int. J. Radiat. Biol., 1983, vol. 43, no. 3, pp. 231-247.

    Google Scholar 

  110. Segal, H.C., Hunt, B.J., and Gilding, K., The Effects of Alginate and Non-Alginate Wound Dressing on Blood Coagulate-on and Platelet Activation, J. Biomater. Appl., 1998, vol. 12, no. 3, pp. 249-257.

    Google Scholar 

  111. Sheth, B.B., US Patent 3326755, 1967.

  112. Sidsrod, O. and Draget, K.I., Chemistry and Physical Properties of Alginates, Carbohydr. Eur., 1996, vol. 14, pp. 6-13.

    Google Scholar 

  113. Skjak-Brak, G., Alginates: Biosynthesis and Some Structure-Function Relationshis Relevant to Biomedical and Biotechnological applications, Biochem. Plant. Polysacch., 1992, vol. 20, pp. 27-33.

    Google Scholar 

  114. Skjak-Brak, G. and Espevik, T., Applications of Alginates Gels in Biotechnology and Biomedicine, Carbohydr. Eur., 1996, vol.14, pp. 19-25.

    Google Scholar 

  115. Steenfos, H.H. and Agren, M.S., A Fibre-Free Alginate Dressing in the Treatment of Split Thickness Skin Graft Donor Sites, J. Eur. Acad. Dermatol. Venerol., 1998, vol. 11, no. 3, pp. 252-256.

    Google Scholar 

  116. Stockton, B., Evans, L.V., Morris, E.R., et al., Alginate Block Structure in Laminaria digitata: Implications for Holdfast Attachment, Bot. Mar., 1980, vol. 23, pp. 563-567.

    Google Scholar 

  117. Sutton, A., Harrison, G.E., Carr, T.E.F., and Barltrop, D., Reduction in Absorption of Dietary Strontium in Children by an Alginate Derivate, Int. J. Radiat. Biol., 1971, vol. 19, no. 1, p. 79.

    Google Scholar 

  118. Sutton, A., Humphreys, E.R., Shepherd, H., and Howells, G.R,, Reduction in Retention of Radioactive Barium in Rats Following Addition of Sodium Alginates Derivates to Diet, Int. J. Radiat. Biol., 1972, vol. 22, no. 3, pp. 297-300.

    Google Scholar 

  119. Sutton, A. and Shepherd, H., Urinary Barium Excretion in Man and its Reduction by Alginate, Hlth. Phys., 1973, vol. 25, no. 2, pp. 182-184.

    Google Scholar 

  120. Suzuki, T., Nakai, K., Yoshie, Y., et al., Effect of Sodium Alginate Rich in Guluronic and Mannuronic Acids on Cholesterol Levels and Digestive Organs of High-Cholesterol-Fed Rats, Nippon Suisan Gakkaishi, 1993, vol. 59, no. 3, pp. 545-551.

    Google Scholar 

  121. Swinyard, E.A. and Pathak, M.A. Surface-Acting Drugs, The Pharmacological Basis of Therapeutics, Gilman, A.G., Goodman, L.S., Rall, T.W., and Muradi, F., Eds., New York: Macmillan, 1985, 7th ed., pp. 946-958.

    Google Scholar 

  122. Tanaka, Y., Inoue, S., and Skoryna, S.C., Studies of Inhibition of Intestinal Absorption of Radioactive Strontium. 9. Relationship between Biological Activity and Electron Microscopic Appearance of Alginate Acid Components, Can. Med. Ass. J., 1970, vol. 103, no. 5, pp. 484-486.

    Google Scholar 

  123. Terada, A., Hara, H., and Mitsuoka, T., Effect of Dietary Alginate on the Fecal Microbiota and Fecal Metabolic Activity in Humans, Microb. Ecol. Health Dis., 1995, vol. 8, no. 6, pp. 259-266.

    Google Scholar 

  124. Torsdottir, I., Alpsten, M., Holm, G., et al., A Small Dose of Soluble Alginate-Fiber Affects Postprandial Glycemia and Gastric Emptying in Humans with Diabetes, J. Nutr., 1991, vol. 121, no. 6, pp. 795-799.

    Google Scholar 

  125. Tsuchiya, Y., Comparative Hypocholesterolemic Activities of Marine Algae, Proc. Int. Seaweed Symp., 1969, vol. 6, pp. 747-757.

    Google Scholar 

  126. Valla, S., Ertesvag, H., and Skjak-Braek, G., Genetics and Biosynthesis of Alginates, Carbohydr. Eur., 1996, vol. 14, pp. 14-18.

    Google Scholar 

  127. Van der Borght, O.L., Colard, J., and Boulenger, R., Human Fecal 226Ra Excretion Shortly After a RaSO4 Dust Contamination, with Alginate Treatment, Hlth. Phys., 1972, vol. 23, no. 2, pp. 240-243.

    Google Scholar 

  128. Van der Borght, O.L., Van Puynbroek, S., and Babakova, I., Effect of Combined Alginate Treatments on Distribution and Excretion of an Old Radiostrontium Contamination, Hith. Phys., 1978, vol. 35, no. 2, pp. 255-258.

    Google Scholar 

  129. Waldron-Edward, D., Paul, T.M., and Skoryna, S.C., Suppression of Intestinal Absorption of Radioactive Strontium by Naturally Occurring Non-Absorbable Polyelectrolytes, Nature, 1965, vol. 205, no. 4976, pp. 1117-1118.

    Google Scholar 

  130. Wang, C. and Yang, G., Comparison of Effects of Two Kinds of Soluble Algae Polysaccharide on Blood Lpid, Liver Lipid, Platelet Aggregation and Growth in Rats, Chung Hua Yu Fang I Hsueh Tsa Chih, 1997, vol. 31, no. 6, pp. 342-345.

    Google Scholar 

  131. Washington, N. and Denton, G., Effect of Alginate and Alginate-Cimetidine Combination Therapy on Stimulated Gastroesophageal Reflux, J. Pharm. Pharmacol., 1995, vol. 47, no. 11, pp. 879-882.

    Google Scholar 

  132. Yang, H. and Wright, J.R., Jr., Co-Encapsulation of Sertoli Enriched Testicular Cell Fractions Further Prolongs Fish-to-Mouse Islet Xenograft Survival, Transplantation, 1999, vol. 67, no. 6, pp. 815-820.

    Google Scholar 

  133. Yoshie, Y., Suzuki, T., Shirai, T., and Hirano, T., Effect of Sodium Alginate on Fat contents and Digestive Organs of Rats Fed with Fat-free Diet, Fish. Sci., 1995, vol. 61, no. 4, pp. 668-671.

    Google Scholar 

  134. Zee, S., Body Weight Loss with the Aid of Alginic Acid, Med. Arch., 1991, vol. 45, nos. 3–4, pp. 113-114.

    Google Scholar 

  135. Zeitoun, P., Salmon, L., Bouche, O., et al., Outcome of Erosive/Ulcerative Reflux oesophagitis in 181 consecutive patients 5 years after diagnosis, Ital. J. Gastroenterol. Hepatol., 1998, vol. 30, no. 5, pp. 470-474.

    Google Scholar 

  136. Zielinski, N.A., Roychoudhury, S., and Chakrabarty, A.M., Regulation of Alginate Gene-Expression in Pseudomonas aeruginosa, Meth. Enzymol., 1994, vol. 2235, pp. 493-502.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khotimchenko, Y.S., Kovalev, V.V., Savchenko, O.V. et al. Physical–Chemical Properties, Physiological Activity, and Usage of Alginates, the Polysaccharides of Brown Algae. Russian Journal of Marine Biology 27 (Suppl 1), S53–S64 (2001). https://doi.org/10.1023/A:1013851022276

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013851022276

Navigation