Skip to main content
Log in

Activation of Soluble Acid Invertase Accompanies the Cytokinin-Induced Source–Sink Leaf Transition

  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Activation of soluble acid invertase by cytokinin was shown using as a model a detached sugar-beet leaf, one half (sink) of which was treated with benzyladenine and the other half (source) of which was sprayed with water. Acid invertase was assumed to mediate the hormone-induced sink properties of the cells. The influx of 14C-sucrose to the leaf half treated with benzyladenine was induced to much greater extent than that of potassium (86Rb). This suggests different pathways or mechanisms of translocation of these substances to the induced sink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kursanov, A.L., Prasolova, M.F., and Pavlinova, O.A., The Pathways of Enzymatic Sucrose Transformation in the Sugar Beet Root as Related to Its Sink Function, Fiziol. Rast. (Moscow), 1989, vol. 36, pp. 629-641 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  2. Mothes, K., Engelbrecht, L., and Kulajewa, O., Ñber die Wirkung des Kinetins auf Stickstoffverteilung und Eiweißynthese in isolierten Blättern, Flora, Ser. A, 1959, vol. 147, pp. 445-464.

    Google Scholar 

  3. Mothes, K. and Engelbrecht, L., On the Activity of a Kinetin-Like Root Factor, Life Sci., 1963, vol. 11, pp. 852-857.

    Google Scholar 

  4. Sokolova, S.V. and Balakshina, N.O., Phytohormone Effect on the Transport and Distribution of 14C-Sucrose in Detached Leaves of Sugar Beet, Fiziol. Rast. (Moscow), 1992, vol. 39, pp. 1088-1097 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  5. Sokolova, S.V., Phytohormone Involving in the Regulation of Transport and Distribution of Substances in Plants, Peredvizhenie assimilyatov v rasteniyakh i problema sakharonakopleniya (Assimilate Transport in Plants as Related to Sugar Accumulation), Kursanov, A.L. and Pechenov, V.A., Eds., Frunze: Ilim, 1986, pp. 233-256.

    Google Scholar 

  6. Ron'zhina, E.S., Sokolova, S.V., and Mokronosov, A.T., Action of Cytokinins on Transport and Partitioning of Substances in Detached Leaves: 2. Conditions for Developing the Cytokinin Effects, Fiziol. Rast. (Moscow), 1995, vol. 42, pp. 61-67 (Russ. J. Plant Physiol., Engl. Transl.).

    Google Scholar 

  7. Roitsch, T. and Tanner, W., Cell Wall Invertase: Bridging the Gap, Bot. Acta, 1996, vol. 109, pp. 90-93.

    Google Scholar 

  8. Tymowska-Lalanne, Z. and Kreis, M., The Plant Invertases: Physiology, Biochemistry and Molecular Biology, Adv. Bot. Res., 1998, vol. 28, pp. 71-117.

    Google Scholar 

  9. Ehneß, R. and Roitsch, T., Coordinated Induction of mRNAs for Extracellular Invertase and a Glucose Transporter in Chenopodium rubrum by Cytokinins, Plant J., 1997, vol. 11, pp. 539-548.

    Google Scholar 

  10. Pavlinova, O.A. and Prasolova, M.F., Physiological Role of Sucrose Synthase in Sugar Beet Roots, Fiziol. Rast. (Moscow), 1972, vol. 19, pp. 920-927 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  11. Turkina, M.V. and Sokolova, S.V., The Methods for Determination of Mono-and Oligosaccharides, Biokhimicheskie metody v fiziologii rastenii (Biochemical Methods in Plant Physiology), Pavlinova, O.A., Ed., Moscow: Nauka, 1971, pp. 7-34.

    Google Scholar 

  12. Lowry, O.H., Rosebrough, N.I., Farr, A.L., and Randall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265-271.

    Google Scholar 

  13. Giaquinta, R., Source and Sink Metabolism in Relation to Phloem Translocation, Plant Physiol., 1978, vol. 61, pp. 380-385.

    Google Scholar 

  14. Morris, D.A. and Arthur, E.D., An Association between Acid Invertase Activity and Cell Growth during Leaf Expansion in Phaseolus vulgaris L., J. Exp. Bot., 1984, vol. 35, pp. 1369-1379.

    Google Scholar 

  15. Pollock, C.J. and Lloyd, E.J., The Distribution of Acid Invertase in Developing Leaves of Lolium temulentum L., Planta, 1977, vol. 133, pp. 197-200.

    Google Scholar 

  16. Kingston-Smith, A.H., Walker, R.P., and Pollock, C.J., Invertase in Leaves: Conundrum or Control Point?, J. Exp. Bot., 1999, vol. 50, pp. 735-743.

    Google Scholar 

  17. Turgeon, R., The Sink-Source Transition in Leaves, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1989, vol. 40, pp. 119-139.

    Google Scholar 

  18. Avigad, G., Sucrose and Disaccharides, Encycl. Plant Physiol., New Ser., Lowns, F.A., Tanner W., Eds., Berlin: Springer-Verlag, 1982, vol. 13A, pp. 217-347.

    Google Scholar 

  19. Sturm, A., Molecular Characterization and Functional Analysis of Sucrose-Cleaving Enzymes in Carrot (Daucus carota L.), J. Exp. Bot., 1996, vol. 47, pp. 1187-1192.

    Google Scholar 

  20. Sturm, A., Sebkova, V., Lorenz, K., Hardegger, M., Lienhard, S., and Unger, C., Developmental-and Organ-Specific Expression of the Genes for Sucrose Synthase and Three Isoenzymes of Acid b-Fructofuranosidase in Carrot, Planta, 1995, vol. 195, pp. 601-610.

    Google Scholar 

  21. Carlson, S.J. and Chowrey, P.S., A Reevaluation of the Relative Roles of Two Invertases, INCW2 and IVR1, in Developing Maize Kernels and Other Tissues, Plant Physiol., 1999, vol. 121, pp. 1025-1035.

    Google Scholar 

  22. Chin, C.K. and Weston, G.D., Distribution in Excised Lycopersicon esculentum Roots of the Principal Enzymes Involved in Sucrose Metabolism, Phytochemistry, 1973, vol. 12, pp. 1229-1235.

    Google Scholar 

  23. Roitsch, T., Bittner, M., and Gadt, D.E., Induction of Apoplastic Invertase of Chenopodium rubrum by D-Glucose and a Glucose Analog and Tissue-Specific Expression Suggest a Role in Sink-Source Regulation, Plant Physiol., 1995, vol. 108, pp. 285-294.

    Google Scholar 

  24. Von Schaewen, A., Stitt, M., Schmidt, R., Sonnewald, U., and Willmitzer, L., Expression of a Yeast-Derived Invertase in the Cell Wall of Tobacco and Arabidopsis Plants Leads to Accumulation of Carbohydrate and Inhibition of Photosynthesis and Strongly Influences Growth and Phenotype of Transgenic Tobacco Plants, EMBO J., 1990, vol. 9, pp. 3033-3044.

    Google Scholar 

  25. Dickinson, C.D., Altabella, T., and Chrispeels, M.J., Slow-Growth Phenotype of Transgenic Tomato Expressing Apoplastic Invertase, Plant Physiol., 1991, vol. 95, pp. 420-425.

    Google Scholar 

  26. Genkov, T., Tsoneva, P., and Ivanova, I., Effect of Cytokinins on Photosynthetic Pigments and Chlorophyllase Activity in in vitro Cultures of Axillary Buds of Dianthus caryophyllus L., J. Plant Growth Regul., 1997, vol. 16, pp. 169-172.

    Google Scholar 

  27. Ron'zhina, E.S., Mokronosov, A.T., and Sokolova, S.V., The Nature of Sink and Retention Effects of Cytokinins in Detached Leaves, Dokl. Akad. Nauk, 1994, vol. 336, pp. 283-286.

    Google Scholar 

  28. Blechschmidt-Schneider, S. and Eschrich, W., Microautoradiographic Localization of Imported 14C-Photosynthate in Induced Sink Leaves of Two Dicotyledonous C4 Plants in Relation to Phloem Unloading, Planta, 1985, vol. 163, pp. 439-447.

    Google Scholar 

  29. Gamalei, Yu.V., Floema lista (Leaf Phloem), Leningrad: Nauka, 1990.

    Google Scholar 

  30. Hayes, P.M. and Patrick, J.W., Photosynthate Transport in Stem of Phaseolus vulgaris L. Treated with Gibberellic Acid, Indole-3-Acetic Acid or Kinetin, Planta, 1985, vol. 166, pp. 371-379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolova, S.V., Balakshina, N.O. & Krasavina, M.S. Activation of Soluble Acid Invertase Accompanies the Cytokinin-Induced Source–Sink Leaf Transition. Russian Journal of Plant Physiology 49, 86–91 (2002). https://doi.org/10.1023/A:1013768429467

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013768429467

Navigation