Skip to main content
Log in

The cytotoxicity of chromium in osteoblasts: effects on macromolecular synthesis

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Exposure of an immortalized rat osteoblast cell line, FFC cells, to Cr VI resulted in inhibition of protein, DNA and RNA synthesis. Protein synthesis (3H-leucine incorporation) was most sensitive. There was no inhibition of the incorporation of 3H-proline into collagen at the concentrations which inhibited general protein synthesis (1 μM), but synthesis of extracellular collagen fibers was markedly decreased by concentrations of 0.5 μM Cr VI and above. This indicates that some aspect of the post-translational processing of the collagen fibers is sensitive to Cr VI inhibition. Collagen fiber formation was not inhibited by Cr III (which does not penetrate the cell membrane) or when Cr VI was reduced to Cr III extracellularly. This suggests that the Cr VI inhibits an intracellular stage of post-translational collagen processing. Both Cr VI and Cr III inhibit collagenase activity, the former being more potent but less efficacious. Our results suggest that leakage of chromium ions from orthopedic implants may cause a decrease in the proliferation and infiltration of osteoblasts around the implant, and a reduction in the synthesis and altered turnover of collagen in extracellular matrix. These effects will influence the osseointegration of implants, the osteolytic response, and ultimately the stable life-time of the implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Langard, in “Chromium: Metabolism and Toxicity”, edited by D. Burrows (CRC Press, Florida, 1983) p. 13.

    Google Scholar 

  2. H. H. Popper, E. Grygar, E. Ingolic and O. Wawschinek, Inhal. Toxicol. 5 (1993) 345.

    Google Scholar 

  3. G. C. Mckay, R. Macnair, C. Macdonald, A. Wykman, I. Goldie and M. H. Grant, Biomaterials 17 (1996) 1339.

    Google Scholar 

  4. J. O. Galante, J. Lemons, M. Spector, P. D. Wilson and T. M. Wright, J. Orthopaed. Res. 9 (1991) 760.

    Google Scholar 

  5. G. Gualtieri, I. Gualtieri, S. Gagliardi, U. E. Pazzaglia, C. Minoia and L. Ceciliani, in “Biomaterials and Clinical Applications”, edited by A. Pizzaferrato, P. G. Marchetti, A. Ravaglioli and A. J. C. Lee (Elsevier Science Publishers, Amsterdam, 1987) p. 729.

    Google Scholar 

  6. F. W. Sunderman, S. M. Hopfer, T. Swift, W. N. Rezuke, L. Ziebka, P. Highman, B. Edwards, M. Folik and H. R. Gossling, J. Orthopaed. Res. 7 (1989) 307.

    Google Scholar 

  7. D. N. Kreibich, C. G. Moran, H. T. Delves, T. D. Owen and I. Pinder J. Bone Joint Surg. 78B (1996) 18.

    Google Scholar 

  8. H. S. Dobbs and M. J. Minski, in “Biomaterials”, edited by G. D. Winter, D. F. Gibbons and H. Plenk (John Wiley and Sons, London, 1982) p. 255

    Google Scholar 

  9. F. Betts, T. Wright, E. Salvati, A. Boskey and M. Bansal, Clin. Orthop. Rel. Res. 276 (1992) 75.

    Google Scholar 

  10. A. Martin, T. W. Bauer, M. T. Manley and K. E. Marks J. Bone Joint Surg. 70A (1988) 1561.

    Google Scholar 

  11. J. J. Ward, D. D. Thornburn, J. E. Lemons and W. K. Dunham, Clin. Orthopaed. Rel. Res. 252 (1990) 299.

    Google Scholar 

  12. W. W. Brien, E. A. Salvati, J. A. Healey, M. Bansal, B. Ghelman and F. Betts J. Bone Joint Surg. 72A (1990) 1097.

    Google Scholar 

  13. J. J. Jacobs, D. H. Rosenbaum, R. M. Hay, S. Gitelis and J. Black ibid. 74B (1992) 740.

    Google Scholar 

  14. D. L. Broek, J. Madri, E. F. Eikenberry and B. Brodsky J. Biol. Chem. 260 (1985) 555.

    Google Scholar 

  15. A. L. J. J. Bronkers, S. Gay, D. M. Lyaruu, R. E. Gay and E. J. Miller, Collagen Rel. Res. 6 (1986) 1.

    Google Scholar 

  16. M. Van Der Rest, in “Bone Matrix and Bone Specific Products”, edited by B. K. Hall (CRC press, Boca Raton, 1991) p. 187.

    Google Scholar 

  17. R. Macnair, R. Wilkinson, C. Macdonald, I. Goldie, D. B. Jones and M. H. Grant, Cells & Mater. 6 (1996) 71.

    Google Scholar 

  18. R. Macnair, E. H. Rodgers, C. Macdonald, A. Wykman, I. Goldie and M. H. Grant J. Mater. Sci. Mater. Med. 8 (1997) 105.

    Google Scholar 

  19. C. Morrison, R. Macnair, C. Macdonald, A. Wykman, I. Goldie and M. H. Grant, Biomaterials 16 (1995) 987.

    Google Scholar 

  20. Q. Shi, J. D. S. Gaylor, R. Cousins, J. Plevris, P. C. Hayes and M. H. Grant, Artif. Organs. 22 (1998) 1023.

    Google Scholar 

  21. C. S. Osborne, W. H. Reid and M. H. Grant, Biomaterials 20 (1999) 283.

    Google Scholar 

  22. K. Merritt and S. A. Brown, Clin. Orthop. 329 (1996) 233.

    Google Scholar 

  23. B. F. Shahgaldi, F. W. Heatley, A. Dewar and B. Corrin, J. Bone Joint Surg. Br. 77 (1995) 962.

    Google Scholar 

  24. H. S. Dobbs and M. J. Minski, Biomaterials 1 (1980) 193.

    Google Scholar 

  25. C. P. Case, V. G. Langkamer, C. James, M. R. Palmer, A. J. Kemp, P. F. Heap and L. Solomon J. Bone Joint Surg. 76B (1994) 701.

    Google Scholar 

  26. J. Ning and M. H. Grant, Toxicol In vitro 13 (1999) 879.

    Google Scholar 

  27. J. Ning and M. H. Grant, ibid. 14 (2000) 329.

    Google Scholar 

  28. M. D. Cohen, B. Kargacin, C. B. Klein and M. Costa, Crit. Rev. Toxicol. 23 (1993) 255.

    Google Scholar 

  29. D. J. Prockop, K. I. Kivirikko, L. Tuderman and N. A. Guzman, New Eng. J. Med. 301 (1979a) 13.

    Google Scholar 

  30. D. J. Prockop, K. I. Kivirikko, L. Tuderman and N. A. Guzman, ibid. 301 (1979b) 77.

    Google Scholar 

  31. Y. Hojima, M. Van Der Rest and D. J. Prockop J. Biol. Chem. 260 (1985) 15996.

    Google Scholar 

  32. Y. Hojima, J. Mckenzie, M. Van Der Rest and D.J. Prockop ibid. 264 (1989) 1336.

    Google Scholar 

  33. R. A. Berg, D. E. Birk and F. H. Silver, Int. J. Biol. Macromol. 6 (1986) 177.

    Google Scholar 

  34. R. Fleischmajer, J. S. Perlish and B. R. Olsen, Cell Tissue Res. 247 (1987) 105.

    Google Scholar 

  35. R. Fleischmajer, J. S. Perlish, R. Timpl and B. R. Olsen J. Histochem. Cytochem. 36 (1988) 1425.

    Google Scholar 

  36. Y. Hojima, B. Behta, A. M. Romanic and D. J. Prockop, Matrix Biol. 14 (1994) 113

    Google Scholar 

  37. K. Merritt, C. D. Fedele and S. A. Brown, in “Biomaterial-Tissue Interfaces”, edited by P. J. Doherty (Elsevier Science Publishers B.V., Amsterdam, 1992) p. 47.

    Google Scholar 

  38. Z. Elias, O. Schneider, F. Aubry, M. Daniere and O. Poirot, Carcinogenesis 4 (1983) 605.

    Google Scholar 

  39. S. M. Horowitz and J. B. Gonzales, Calcif. Tissue Int. 59 (1996) 392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ning, J., Henderson, C. & Grant, M.H. The cytotoxicity of chromium in osteoblasts: effects on macromolecular synthesis. Journal of Materials Science: Materials in Medicine 13, 47–52 (2002). https://doi.org/10.1023/A:1013630401959

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013630401959

Keywords

Navigation