Skip to main content
Log in

Determination of Site Specific Adsorption Energies of CO on Copper

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The binding energies of (isolated) CO molecules adsorbed at several atomic sites (terrace, step, kink) on a number of differently oriented copper surfaces have been measured by thermal desorption spectroscopy (TDS). In addition to the three low-indexed Cu surfaces several regular stepped and kinked single crystal surfaces have been employed. Using LEED measurements together with available data in the literature allowed identification of the various different CO adlayers and to assign the different TDS binding energies to the different adsorbate sites. For the close-packed surfaces binding energies between 47 kJ/mol (Cu(111)) and 51 kJ/mol (Cu(100)) were observed, which increased to 58 kJ/mol for CO molecules bound to step edges. Unexpectedly, for kink sites the same binding energy (to within 1 kJ/mol) as for step edges was observed. Moreover, a very similar binding energy of 58 kJ/mol was also measured for random defect sites on sputtered and on poly-crystalline substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Dumesic, D.F. Rudd, L.M. Aparicio, J.E. Rekoske and A.A. Trevino, The Microkinetics of Heterogeneous Catalysis, ACS Professional Reference Book (Am. Chem. Soc., Washington, DC, 1993).

    Google Scholar 

  2. P. Stoltze, Prog. Surf. Sci. 65 (2000) 65.

    Google Scholar 

  3. V.P. Zhdanov and B. Kasemo, Surf. Sci. Rep. 39 (2000) 25.

    Google Scholar 

  4. S.M. Davis and G.A. Somorjai, in: The Chemical Physics of Solid Surfaces, Vol. 4, eds. D.A. King and D.A. Woodruff (Elsevier, Amsterdam, 1982) p. 217.

    Google Scholar 

  5. H. Wagner, in: Springer Tracts in Modern Physics, Vol. 85, ed. G. Hoehler (Springer, Berlin, 1987) p. 152.

    Google Scholar 

  6. K. Wandelt, Surf. Sci. 251/252 (1991) 387.

    Google Scholar 

  7. J. Xu and J.T. Yates, J. Chem. Phys. 99 (1993) 725.

    Google Scholar 

  8. C.R. Henry, Surf. Sci. Rep. 31 (1998) 231.

    Google Scholar 

  9. J.L. Falconer and J.A. Schwarz, Temperature-Programmed Desorption and Reaction: Applications to Supported Catalysts, Catal. Rev. Sci. Eng., Vol. 25 (1983) p. 141.

    Google Scholar 

  10. M. Henzler, Appl. Phys. 9 (1976) 11.

    Google Scholar 

  11. D.P. Woodruff, B.E. Hayden, K. Prince and A.M. Bradshaw, Surf. Sci. 123 (1982) 397.

    Google Scholar 

  12. T. Schneider and W. Hirschwald, Catal. Lett. 14 (1992) 197.

    Google Scholar 

  13. J.B. Hansen, in: Handbook of Heterogeneous Catalysis, Vol. 3, eds. G. Ertl, H. Knözinger and J. Weitkamp (VCH, Weinheim, 1997) p. 1856.

    Google Scholar 

  14. K. Kochloefl, in: Handbook of Heterogeneous Catalysis, Vol. 3, eds. G. Ertl, H. Knözinger and J. Weitkamp (VCH, Weinheim, 1997) p. 1831.

    Google Scholar 

  15. C.V. Ovesen, P. Stolze, J.K. Nørskov and C.T. Campbell, J. Catal. 134 (1992) 445.

    Google Scholar 

  16. T.S. Askgaard, J.K. Nørskov, C.V. Ovesen and P. Stolze, J. Catal. 156 (1995) 229.

    Google Scholar 

  17. C.V. Ovesen, B.S. Clausen, J. Schiøtz, P. Stolze, H. Topsøe and J.K. Nørskov, J. Catal. 168 (1997) 133.

    Google Scholar 

  18. S.S. Fu and G.A. Somorjai, Surf. Sci. 237 (1990) 87.

    Google Scholar 

  19. G. Loepp, S. Vollmer, G. Witte and Ch. Wöll, Langmuir 15 (1999) 3767.

    Google Scholar 

  20. G. Witte, J. Braun, D. Nowak, L. Bartels, B. Neu and G. Meyer, Phys. Rev. B 58 (1998) 13224.

    Google Scholar 

  21. S. Vollmer, A. Birkner, S. Lukas, G. Witte and Ch. Wöll, Appl. Phys. Lett. 76 (2000) 2686.

    Google Scholar 

  22. P.A. Redhead, Vacuum 12 (1962) 203.

    Google Scholar 

  23. J.C. Campuzano, in: The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. 3, Part A, eds. D.A. King and D.P. Woodruff (Elsevier, Amsterdam, 1990).

    Google Scholar 

  24. J. Ellis, J.P. Toennies and G. Witte, J. Chem. Phys. 102 (1995) 5059.

    Google Scholar 

  25. S. Vollmer, G. Witte and Ch. Wöll, in preparation.

  26. W. Kirstein, B. Krüger and F. Thieme, Surf. Sci. 176 (1986) 505.

    Google Scholar 

  27. G. Meyer, B. Neu and K.H. Rieder, Chem. Phys. Lett. 240 (1995) 379; G. Meyer, S. Zöphel and K.H. Rieder, Phys. Rev. Lett. 77 (1996) 2113.

    Google Scholar 

  28. R.A. Hadden, B. Sakakini, J. Tabatabei and K.C. Waugh, Catal. Lett. 44 (1997) 145.

    Google Scholar 

  29. A.J. Elliott, R.A. Hadden, J. Tabatabei, K.C. Waugh and F.W. Zemicael, J. Catal. 157 (1995) 153.

    Google Scholar 

  30. J. Pritchard, T. Catterick and R.K. Gupta, Surf. Sci. 53 (1975) 1.

    Google Scholar 

  31. G. Blyholder, J. Phys. Chem. 68 (1964) 2772.

    Google Scholar 

  32. B. Hammer, O.H. Nielsen and J.K. Nørskov, Catal. Lett. 46 (1997) 31.

    Google Scholar 

  33. P. Bagus and C. Wöll, Chem. Phys. Lett. 294 (1999) 599.

    Google Scholar 

  34. R. Smoluchowski, Phys. Rev. B 24 (1931) 754.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollmer, S., Witte, G. & Wöll, C. Determination of Site Specific Adsorption Energies of CO on Copper. Catalysis Letters 77, 97–101 (2001). https://doi.org/10.1023/A:1012755616064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012755616064

Navigation