Skip to main content
Log in

Theoretical Study of the Molecular Hydrogen Adsorption and Dissociation on Different Zn(II) Active Sites of Zeolites

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The adsorption and dissociation of hydrogen on Zn-exchanged zeolites has been studied theoretically by density functional theory (DFT). Diverse types of active sites have been employed for the Zn cation, such as: placed on different rings (4T and 5T), in the (ZnO)4 (in a cubic configuration cluster) and in the [Zn–O–Zn]2+ dimer complex. The Zn(II) cation is most exposed to probe molecules when situated on 4T ring of zeolites. In this position, the cation activates the infrared stretching band of the hydrogen molecule, which is not observed when Zn(II) sits on 5T rings. The assignment of the band shifts found in the experimental IR spectra of hydrogen adsorption, which were associated to the cation position in the zeolite framework, had to be revised following the results for the calculated shifts. Larger shifts are associated to the cationic position at small rings. In the case for (ZnO)4 the dissociative adsorption is more favorable. The calculated activation energy is the lowest among all sites studied. The results have also confirmed the current proposal that ZnO microparticles are responsible for the large H–H stretching shift and the H2 dissociation on Zn(II) sites in zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ono, Catal. Rev. Sci. Eng. 34 (1992) 179.

    Google Scholar 

  2. M.V. Frash and R.A. van Santen, Phys. Chem. Chem. Phys. 2 (2000) 1085.

    Google Scholar 

  3. J.A. Biscardi, G.D. Meitzner and E. Iglesia, J. Catal. 179 (1998) 192.

    Google Scholar 

  4. N. Kumar and L.-E. Lindfors, Catal. Lett. 38 (1996) 239.

    Google Scholar 

  5. A.A. Shubin, G.M. Zhidomirov, A.L. Yakovlev and R.A. van Santen, J. Phys. Chem B 105 (2001) 4928.

    Google Scholar 

  6. A.A. Shubin, G.M. Zhidomirov, A.L. Yakovlev and R.A. van Santen, Catal. Lett. 70 (2000) 175.

    Google Scholar 

  7. L.A.M.M. Barbosa and R.A. van Santen, Catal. Lett. 63 (1999) 97.

    Google Scholar 

  8. A.V. Larin and E. Cohen de Lara, J. Chem. Phys. 101 (1994) 8130.

    Google Scholar 

  9. A.V. Larin and E. Cohen de Lara, Mol. Phys. 88 (1996) 1399.

    Google Scholar 

  10. V.B. Kazansky, L.M. Kustov and A.Y. Khodakov, in: Zeolites: Facts, Figures, Future, eds. P.A. Jacobs and R.A. van Santen (Elsevier, Amsterdam, 1989) p. 1173.

    Google Scholar 

  11. L.M. Kustov and V.B. Kazansky, J. Chem. Soc. Faraday Trans. 87 (1991) 2675.

    Google Scholar 

  12. A.Y. Khodakov, L.M. Kustov, V.B. Kazansky and C. Williams, J. Chem. Soc. Faraday Trans. 89 (1993) 1393.

    Google Scholar 

  13. E.B. Uvarova, L.M. Kustov, I.I. Lishchiner, O.V. Malova and V.B. Kazansky, in: Studies in Surface Science and Catalysis, Vol. 105, eds. H. Chon, S.-K. Ihm and Y.S. Uh (Elsevier, Amsterdam, 1997) p. 1243.

    Google Scholar 

  14. V.B. Kazansky, V.Y. Borovkov, A.I. Serykh, R.A. van Santen and P.J. Stobbelaar, Phys. Chem. Chem. Phys. 1 (1999) 2881.

    Google Scholar 

  15. V.B. Kazansky, V.Y. Borovkov, A.I. Serykh, R.A. van Santen and B.G. Anderson, Catal. Lett. 66 (2000) 39.

    Google Scholar 

  16. J. Sauer, P. Ugliengo, E. Garrone and V.R. Saunders, Chem. Rev. 94 (1994) 2095.

    Google Scholar 

  17. G.J. Kramer, A.J.M. de Man and R.A. van Santen, J. Am. Chem. Soc. 113 (1991) 6435.

    Google Scholar 

  18. J.D. Gale, Topics Catal. 3 (1996) 169.

    Google Scholar 

  19. R. Shah, J.D. Gale and M.C. Payne, J. Phys. Chem. B 101 (1997) 4787.

    Google Scholar 

  20. V.V. Mihaleva, R.A. van Santen and A.P.J. Jansen, J. Chem. Phys., accepted for publication.

  21. J.E. Readman, I. Gameson, J.A. Hrijac, P.P. Edwards and P.A. Anderson, Chem. Commun. (2000) 595.

  22. H.B. Lee, H.M. Lim and C.S. Han, Bull. Korean Chem. Soc. 19 (1998) 1002.

    Google Scholar 

  23. H.M. Lim and C.S. Han, Bull. Korean Chem. Soc. 20 (1999) 143.

    Google Scholar 

  24. L.A.M.M. Barbosa, G.M. Zhidomirov and R.A. van Santen, Phys. Chem. Chem. Phys. 2 (2000) 3909.

    Google Scholar 

  25. T.H. Dunning Jr. and P.J. Hay, in: Modern Theoretical Chemistry, ed. H.F. Schaefer III (Plenum, New York, 1976) p. 1.

    Google Scholar 

  26. V. Rassolov, J.A. Pople, M. Ratner and T.L. Winder, J. Chem. Phys. 109 (1998) 1223.

    Google Scholar 

  27. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, Gaussian 98, Revision A.5 (Gaussian, Pittsburgh, PA, 1998).

    Google Scholar 

  28. R.A. van Santen, Catal. Today 38 (1997) 377.

    Google Scholar 

  29. J.B. Nicholas, Topics Catal. 4 (1997) 157.

    Google Scholar 

  30. W. Koch and R.H. Hertwig, Chem. Phys. Lett. 286 (1997) 345.

    Google Scholar 

  31. L.A. Curtiss, K. Raghavachari, P.C. Redfern and J.A. Pople, Chem. Phys. Lett. 270 (1997) 419.

    Google Scholar 

  32. D.M. Smith, B.T. Golding and L. Radom, J. Am. Chem. Soc. 121 (1999) 9388.

    Google Scholar 

  33. A.K. Chandra and M.T. Nguyen, Chem. Phys. 232 (1998) 299.

    Google Scholar 

  34. J.B. Nicholas, Topics Catal. 9 (1999) 181.

    Google Scholar 

  35. R. Arnaud, C. Adamo, M. Cossi, A. Millet, Y. Vallé and V. Barone, J. Am. Chem. Soc. 122 (2000) 324.

    Google Scholar 

  36. H. B. Schlegel, in: Ab initio Methods in Quantum Chemistry-I, ed. K. P. Lawley (Wiley, New York, 1987) p. 249.

    Google Scholar 

  37. A.P. Scott and L. Radom, J. Chem. Phys. 100 (1996) 16502.

    Google Scholar 

  38. A.M. Ferrari, K.M. Neyman, S. Huber, H. Knözinger and N. Rösch, Langmuir 14 (1998) 5559.

    Google Scholar 

  39. G. Lendvay and I. Mayer, Chem. Phys. Lett. 297 (1998) 365.

    Google Scholar 

  40. L.A.M.M. Barbosa and R.A. van Santen, J. Mol. Catal. A 166 (2001) 101.

    Google Scholar 

  41. L.A.M.M. Barbosa, R.A. van Santen and J. Hafner, J. Am. Chem. Soc. 123 (2001) 4530.

    Google Scholar 

  42. J. Eckert, J.M. Nicol, J. Howard and F.R. Trouw, J. Phys. Chem. 100 (1996) 10646.

    Google Scholar 

  43. A. Seidel, G. Kampf, A. Schmidt and B. Boddenberg, Catal. Lett. 51 (1998) 213.

    Google Scholar 

  44. D. Bae and K. Seff, Micropor. Mesopor. Mater. 40 (2000) 233.

    Google Scholar 

  45. G.J. Kubas, R.R. Ryan, B.I. Swanson, P.J. Vergamini and H.J. Wasserman, J. Am. Chem. Soc. 106 (1984) 451.

    Google Scholar 

  46. D.G. Hamilton and R.H. Crabtree, J. Am. Chem. Soc. 110 (1988) 4126.

    Google Scholar 

  47. L.S. van der Sluys, J. Eckert, O. Eisenstein, J.H. Hall, J.C. Huffman, S.A. Jackson, T.F. Koetzle, G.J. Kubas, P.J. Vergamini and K.G. Caulton, J. Am. Chem. Soc. 112 (1990) 4831.

    Google Scholar 

  48. W.D. Harman and H. Taube, J. Am. Chem. Soc. 112 (1990) 2261.

    Google Scholar 

  49. El-M. El-Malki, R.A. van Santen and W.M.H. Sachtler, J. Phys. Chem. B 103 (1999) 4611.

    Google Scholar 

  50. E. Iglesia, J.E. Baumgartner and G.L. Price, J. Catal. 134 (1992) 549.

    Google Scholar 

  51. S. Valange, Z. Gabelica, B. Onida and E. Garrone, in: 12th Int. Zeolite Conference, eds. M.M. Treacy, B.K. Markus, M.E. Bisher and J.B. Higgins (Baltimore, MD, 1999) p. 2711.

  52. B. Paiz and S. Suhai, J. Comp. Chem. 19 (1998) 575.

    Google Scholar 

  53. T. Baba, N. Komatsu, H. Sawada, Y. Yamaguchi, T. Takahashi, H. Sugisawa and Y. Ono, Langmuir 15 (1999) 7894.

    Google Scholar 

  54. Kh.M. Minachev, V.I. Garanin, V.V. Kharlamov and T.A. Isakova, Kinet. Katal. 13 (1972) 1101.

    Google Scholar 

  55. J. Kanai, J.A. Martens and P.A. Jacobs, J. Catal. 133 (1992) 527.

    Google Scholar 

  56. S. Senger and L. Radom, J. Am. Chem. Soc. 122 (2000) 2613.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, L.A., Zhidomirov, G.M. & van Santen, R.A. Theoretical Study of the Molecular Hydrogen Adsorption and Dissociation on Different Zn(II) Active Sites of Zeolites. Catalysis Letters 77, 55–62 (2001). https://doi.org/10.1023/A:1012747314247

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012747314247

Navigation