Skip to main content
Log in

Toward an Adequate Scheme for the ATP Synthase Catalysis

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The suggestions from the author's group over the past 25 years for how steps in catalysis by ATP synthase occur are reviewed. Whether rapid ATP hydrolysis requires the binding of ATP to a second site (bi-site activation) or to a second and third site (tri-site activation) is considered. Present evidence is regarded as strongly favoring bi-site activation. Presence of nucleotides at three sites during rapid ATP hydrolysis can be largely accounted for by the retention of ADP formed and/or by the rebinding of ADP formed. Menz, Leslie and Walker ((2001) FEBS Lett., 494, 11-14) recently attained an X-ray structure of a partially closed enzyme form that binds ADP better than ATP. This accomplishment and other considerations form the base for a revised reaction sequence. Three types of catalytic sites are suggested, similar to those proposed before the X-ray data became available. During net ATP synthesis a partially closed site readily binds ADP and Pi but not ATP. At a closed site, tightly bound ADP and Pi are reversibly converted to tightly bound ATP. ATP is released from a partially closed site that can readily bind ATP or ADP. ATP hydrolysis when protonmotive force is low or lacking occurs simply by reversal of all steps with the opposite rotation of the γ subunit. Each type of site can exist in various conformations or forms as they are interconverted during a 120° rotation. The conformational changes with the ATP synthase, including the vital change when bound ADP and Pi are converted to bound ATP, are correlated with those that occur in enzyme catalysis in general, as illustrated by recent studies of Rose with fumarase. The βB structure of Walker's group is regarded as an unlikely, or only quite transient, intermediate. Other X-ray structures are regarded as closely resembling but not identical with certain forms participating in catalysis. Correlation of the suggested reaction scheme with other present information is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Boyer, P. D. (1977) Annu. Rev. Biochem., 46, 957–966.

    Google Scholar 

  2. Cross, R. L. (1981) Annu. Rev. Biochem., 50, 681–714.

    Google Scholar 

  3. Boyer, P. D., and Kohlbrenner, W. E. (1981) in Energy Coupling in Photosynthesis ( Selman, B., and Selman-Reiner, S., eds.) Elsevier/North Holland, NY, pp. 231–240.

  4. Boyer, P. D. (1993) Biochim. Biophys. Acta, 1140, 215–250.

    Google Scholar 

  5. Milgrom, M. M., Ehler, L. L., and Boyer, P. D. (1990) J. Biol. Chem., 265, 18725–18728.

    Google Scholar 

  6. Zhou, J.-M., and Boyer, P. D. (1993) J. Biol. Chem., 268, 1531–1538.

    Google Scholar 

  7. Murataliev, M. B., and Boyer, P. D. (1994) J. Biol. Chem., 269, 15431–15439.

    Google Scholar 

  8. Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature, 370, 621–628.

    Google Scholar 

  9. Duncan, T. M., Bulygin, V. V., Hutcheon, M. S., and Cross, R. L. (1995) Proc. Natl. Acad. Sci. USA, 92, 10964–10968.

    Google Scholar 

  10. Sabbert, D., Engelbrecht, S., and Junge, W. (1996) Nature, 381, 623–625.

    Google Scholar 

  11. Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997) Nature, 386, 299–302.

    Google Scholar 

  12. Weber, J., Wilke-Mounts, S., Lee, R. S.-F., Grell, E., and Senior, A. E. (1993) J. Biol. Chem., 268, 20126–20133.

    Google Scholar 

  13. Weber, J., and Senior, A. E. (1997) Biochim. Biophys. Acta, 1319, 19–58.

    Google Scholar 

  14. Milgrom, Y. M., Murataliev, M. B., and Boyer, P. D. (1998) Biochem. J., 330, 1037–1043.

    Google Scholar 

  15. Boyer, P. D. (1997) Annu. Rev. Biochem., 66, 717–749.

    Google Scholar 

  16. Dou, C., Fortes, P. A., and Allison, W. S. (1998) Biochemistry, 37, 16757–16764.

    Google Scholar 

  17. Weber, J., Dunn, S. D., and Senior, A. E. (1999) J. Biol. Chem., 274, 19124–19128.

    Google Scholar 

  18. Weber, J., Bowman, C., and Senior, A. E. (1996) J. Biol. Chem., 271, 18711–18718.

    Google Scholar 

  19. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K., and Hiroyasu, I. (2001) Nature, in press.

  20. Weber, J., and Senior, A. E. (2000) Biochim. Biophys. Acta, 1458, 300–309.

    Google Scholar 

  21. Allison, W. S. (1998) Accts. Chem. Res., 31, 819–826.

    Google Scholar 

  22. Leslie, A. G. W., and Walker, J. E. (2000) Phil. Trans. R. Soc. Lond. B, 355, 465–472.

    Google Scholar 

  23. Boyer, P. D. (2000) Biochim. Biophys. Acta, 1458, 252–262.

    Google Scholar 

  24. Rose, I. A. (1997) Biochemistry, 36, 12346–12354.

    Google Scholar 

  25. Rose, I. A. (1998) Biochemistry, 37, 17651–17658.

    Google Scholar 

  26. Menz, R. I., Leslie, A. G. W., and Walker, J. E. (2001) Cell, in press.

  27. Rosing, J., Kayalar, C., and Boyer, P. D. (1977) J. Biol. Chem., 252, 2478–2485.

    Google Scholar 

  28. Feldman, R. I., and Sigman, D. S. (1983) J. Biol. Chem., 252, 12178–12183.

    Google Scholar 

  29. Al-Shawi, M. K., Parsonage, D., and Senior, A. E. (1990) J. Biol. Chem., 265, 4402–4410.

    Google Scholar 

  30. Kayalar, C., Rosing, J., and Boyer, P. D. (1977) J. Biol. Chem., 252, 2486–2491.

    Google Scholar 

  31. Perez, J. A., and Ferguson, S. J. (1990) Biochemistry, 29, 10503–10518.

    Google Scholar 

  32. Rosen, G., Gresser, M., Vinkler, C., and Boyer, P. D. (1979) J. Biol. Chem., 254, 10654–10661.

    Google Scholar 

  33. Stroop, S. D., and Boyer, P. D. (1985) Biochemistry, 24, 2304–2310.

    Google Scholar 

  34. Richard, P., and Gräber, P. (1992) Eur. J. Biochem., 210, 287–291.

    Google Scholar 

  35. Menz, R. I., Leslie, A. G. W., and Walker, J. E. (2001) FEBS Letts., 494, 11–14.

    Google Scholar 

  36. Berkich, D. A., Williams, G. D., Masiakos, P. T., Smith, M. B., Boyer, P. D., and LaNoue, K. F. (1991) J. Biol. Chem., 266, 123–129.

    Google Scholar 

  37. Wang, H., and Oster, G. (1998) Nature, 396, 279–282.

    Google Scholar 

  38. Cherepanov, D. A., Mulkidjanian, A. Y., and Junge, W. (1999) FEBS Letts., 449, 1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyer, P.D. Toward an Adequate Scheme for the ATP Synthase Catalysis. Biochemistry (Moscow) 66, 1058–1066 (2001). https://doi.org/10.1023/A:1012420610963

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012420610963

Navigation