Skip to main content
Log in

Novel Physiologic Functions of Endocannabinoids as Revealed Through the Use of Mutant Mice

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The presence in the mammalian brain of specific receptors for marijuana triggered a search for endogenous ligands, several of which have been recently identified. There has been growing in-terest in the possible physiological functions of endocannabinoids, and mutant mice that lack cannabinoid receptors have become an important tool in the search for such functions. To date, studies using CB1 knockout mice have supported the possible role of endocannabinoids in retro-grade synaptic inhibition in the hippocampus, in long-term potentiation and memory, in the de-velopment of opiate dependence, and in the control of appetite and food intake. They also suggested the existence of as yet unidentified cannabinoid receptors in the cardiovascular and central nervous systems. The use of CB2 receptor knockout mice suggested a role for this re-ceptor in macrophage-mediated helper T cell activation. Further studies will undoubtedly reveal many additional roles for this novel signaling system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Adams, R. 1942. Marihuana. Harvey Lectures 34:168–197.

    Google Scholar 

  2. Gaoni, Y. and Mechoulam, R. 1964. Isolation, structure, and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 86:1646–1647.

    Google Scholar 

  3. Devane, W. A., Dysarz, F. A., Johnson, L. S., Melvin, L. S., and Howlett, A. C. 1988. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 34:605–613.

    Google Scholar 

  4. Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C., and Bonner, T. I. 1990. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature (London) 346:561–564.

    Google Scholar 

  5. Herkenham, M., Lynn, A. B., Little, M. D., Johnson, M. R., Melvin, L. S., de Costa, B. R., and Rice, K. C. 1990. Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci. USA 67:1932–1936.

    Google Scholar 

  6. Ishac, E. J. N., Jiang, L., Lake, K. D., Varga, K., Aboud, M. E., and Kunos, G. 1996. Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB1 receptors on peripheral sympathetic nerves. Br. J. Pharmacol. 118:2023–2028.

    Google Scholar 

  7. Munro, S., Thomas, K. L., and Abu-Shaar, M. 1993. Molecular characterization of a peripheral receptor for cannabinoids. Nature (London) 365:61–65.

    Google Scholar 

  8. Evans, D. M., Johnson, M. R., and Howlett, A. C. 1992. Ca2+-dependent release from rat brain of cannabinoid receptor binding activity. J. Neurochem. 58:780–782.

    Google Scholar 

  9. Devane, W. A., Hanus, L., Breuer, A., Pertwee, R. G., Stevenson, L. A., Griff, C., Gibson, D., Mandelbaum, A., Etinger, A., and Mechoulam, R. 1992. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949.

    Google Scholar 

  10. Di Marzo, V., Fontana, A., Cadas, H., Schinelli, S., Cimino, G., Schwartz, J. C., and Piomelli, D. 1994. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature (London) 372:686–691.

    Google Scholar 

  11. Di Marzo, V., Melck, D., Bisogno, C., and De Petrocellis, L. 1998. Endocannabinoids: Endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci. 21:521–528.

    Google Scholar 

  12. Devane, W. A. and Axelrod, J. 1994. Enzymatic synthesis of anandamide, an endogenous ligand for the cannabinoid receptor, by brain membranes. Proc. Natl. Acad. Sci. USA 91:6698–6701.

    Google Scholar 

  13. Deutsch, D. G. and Chin, S. A. 1993. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem. Pharmacol. 46:791–796.

    Google Scholar 

  14. Cravatt, B. F., Giang, D. K., Mayfield, S. P., Boger, D. L., Lerner, R. A., and Gilula, N. B. 1996. Molecular characterization of an enzyme that degrades neuromodulatory fatty acids. Nature (London) 384:83–87.

    Google Scholar 

  15. Beltramo, M., Stella, N., Calignano, A., Lin, S. Y., Makriyannis, A., and Piomelli, D. 1997. Functional role of a high-affinity anandamide transport, as revealed by selective inhibition. Science 277:1094–1097.

    Google Scholar 

  16. Sugiura, T., Kodaka, T., Nakane, S., Kishimoto, S., Kondo, S., and Waku, K. 1995. 2-Arachidonoylglycerol: A possible endogenous cannabinoid ligand in brain. Biochem. Biophys. Res. Commun. 215:89–97.

    Google Scholar 

  17. Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumski, L., Kaminski, N. E., Schatz, A. R., Gopher, A., Almog, S., Martin, B. R., and Compton, D. R. 1995. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50:83–90.

    Google Scholar 

  18. Sugiura, T. and Waku, K. 2000. 2-Arachidonoylglycerol and cannabinoid receptors. Chem. Phys. Lipids 108:89–106.

    Google Scholar 

  19. Goparaju, S. K., Ueda, N., Taniguchi, K., and Yamamoto, S. 1998. Anandamide amidohydrolase reacting with 2-arachidonoylglycerol, another cannabinoid receptor ligand. FEBS Lett. 422:69–73.

    Google Scholar 

  20. Járai, Z., Wagner, J. A., Goparaju, S. K., Wang, L., Razdan, R. K., Sugiura, T., Zimmer, A. M., Bonner, T. I., Zimmer, A., and Kunos, G. 2000. Cardiovascular effects of 2-arachidonoyl glycerol in anesthetized mice. Hypertension 35:679–684.

    Google Scholar 

  21. Hanus, L., Abu-Lafi, S., Fride, E., Breuer, A., Vogel, Z., Shalev, D. E., Kustanovich, I., and Mechoulam, R. 2001. 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc. Natl. Acad. Sci. USA 98:3662–3665.

    Google Scholar 

  22. Wilson R. I. and Nicoll, R. A. 2001. Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses. Nature (London) 410:588–592.

    Google Scholar 

  23. Rinaldi-Carmona, M., Barth, F., Heaulme, M., Shire, D., Calndra, B., Congy, C., Martinez, S., Maruani, J., Neliat, G., Caput, D., Ferrara, P., Soubrie, P., Breliere, J. C., and Le Fur, G. 1994. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett. 350:240–244.

    Google Scholar 

  24. Rinaldi-Carmona, M., Barth, F., Millan, I., Derocq, J.-M., Casellas, P., Congy, C., Oustric, D., Sarran, M., Bouaboula, M., Calndra, B., Portier, M., Shire, D., Breliere, J.-C., and Le Fur, G. 1998. SR144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J. Pharmacol. Exp. Ther. 284:644–650.

    Google Scholar 

  25. Gatley, S. J., Lan, R., Pyatt, B., Gifford, A. N., Volkow, N. D., and Makriyannis, A. 1997. Binding of non-classical cannabinoid CP 55,940 and the diazylpyrazole AM251 to rodent brain cannabinoid receptors. Life Sci. 61:PL191–PL197.

    Google Scholar 

  26. Felder, C. C., Joyce, K. E., Briley, E. M., Glass, M., Mackie, K. P., Fahey, K. J., Cullinan, G. J., Hunden, D. C., Johnson, D. W., Chaney, M. O., Koppel, G. A., and Brownstein, M. 1998. LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation. J. Pharmacol. Exp. Ther. 284:291–297.

    Google Scholar 

  27. Shire, D., Calandra, B., Bouaboula, M., Barth, F., Rinaldi-Carmona, M., Casellas, P., and Ferrara, P. 1999. Cannabinoid receptor interactions with the antagonists SR141716A and SR144528. Life Sci. 65:627–635.

    Google Scholar 

  28. Bouaboula, M., Perrachon, S., Milligan, L., Canat, X., Rinaldi-Carmona, M., Portier, M., Barth, F., Calandra, B., Pecceu, F., Lupker, J., Maffrand, J. P., Le Fur, G., and Casellas, P. 1997. A selective inverse agonist for central cannabinoid receptor inhibits mitogen-activated protein kinase activation stimulated by insulin or insulin-like growth factor. 1. Evidence for a new model of receptor/ligand interactions. J. Biol. Chem. 272:22330–22339.

    Google Scholar 

  29. White, R. and Hiley, C. R. 1998. The actions of the cannabinoid receptor antagonist, SR141716A, in the rat isolated mesenteric artery. Br. J. Pharmacol. 125:689–696.

    Google Scholar 

  30. Ledent, C., Valverde, O., Cossu, G., Petitet, F., Aubert, J.-F., Beslot, F., Bohme, G. A., Imperato, A., Pedrazzini, T., Roques, B. P., Vassart, G., Fratta, W., and Parmentier, M. 1999. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283:401–404.

    Google Scholar 

  31. Zimmer, A., Zimmer, A. M., Hohmann, A. G., Herkenham, M., and Bonner, T. I. 1999. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc. Natl. Acad. Sci. USA 96:5780–5785.

    Google Scholar 

  32. Lake, K. D., Compton, D. R., Varga, K., Martin, B. R., and Kunos, G. 1997. Cannabinoid-induced hypotension and bradycardia in rats is mediated by CB1-like cannabinoid receptors. J. Pharmacol. Exp. Ther. 281:1030–1037.

    Google Scholar 

  33. Hájos, N., Katona, I., Naiem, S. S., Mackie, K., Ledent, C., Mody, I., and Freund, T. F. 2000. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci. 12:3239–3249.

    Google Scholar 

  34. Böhme, G. A., Laville, M., Ledent, C., Parmentier, M., and Imperato, A. 2000. Enhanced long-term potentiation in mice lacking cannabinoid CB1 receptors. Neuroscience 95:5–7.

    Google Scholar 

  35. Reibaud, M., Obinu, M. C., Ledent, C., Parmentier, M., Böhme, G. A., and Imperato, A. 1999. Enhancement of memory in cannabinoid CB1 receptor knock-out mice. Eur. J. Pharmacol. 379:R1–R2.

    Google Scholar 

  36. Di Chiara, G. and Imperato, A. 1987. Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J. Pharmacol. Exp. Ther. 244:1067–1080.

    Google Scholar 

  37. Mascia, M. S., Obinu, M. C., Ledent, C., Parmentier, M., Böhme, G. A., Imperato, A., and Fratta, W. 1999. Lack of dopamine release in the nucleus accumbens of cannabinoid CB1 receptor knockout mice. Eur. J. Pharmacol. 383:R1–R2.

    Google Scholar 

  38. Cossu, G., Ledent, C., Fattore, L., Imperato, A., Böhme, G. A., Parmentier, M., and Fratta, W. 2001. Cannabinoid CB1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse. Behav. Brain Res. 118:61–65.

    Google Scholar 

  39. Calignano, A., La Rana, G., Giuffrida, A., and Piomelli, D. 1998. Control of pain initiation by endogenous cannabinoids. Nature 394:277–281.

    Google Scholar 

  40. Steiner, H., Bonner, T. I., Zimmer, A. M., Kitai, S. T., and Zimmer, A. 1999. Altered gene expression in striatal projection neurons in CB1 cannabinoid receptor knockout mice. Proc. Natl. Acad. Sci. USA 96:5786–5790.

    Google Scholar 

  41. Járai, Z., Wagner, J. A., Varga, K., Lake, K. D., Compton, D. R., Martin, B. R., Zimmer, A. M., Bonner, T. I., Buckley, N. E., Mezey, E., Razdan, R. K., Zimmer, A., and Kunos, G. 1999. Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. Proc. Natl. Acad. Sci. USA 96:14136–14141.

    Google Scholar 

  42. Kunos, G., Járai, Z., Varga, K., Liu, J., Wang, L., and Wagner, J. A. 2000. Cardiovascular effect of endocannabinoids—the plot thickens. Prostagl. Other Lipid Med. 61:71–84.

    Google Scholar 

  43. Adams, M. D., Earnhardt, J. T., Martin, B. R., Harris, L. S., Dewey, W. L., and Razdan, R. K. 1977. A cannabinoid with cardiovascular activity but no overt behavioral effects. Experientia 33:1204–1205.

    Google Scholar 

  44. Wagner, J. A., Varga, K., Járai, Z., and Kunos, G. 1999. Mesenteric vasodilation mediated by endothelial anandamide receptors. Hypertension 33(Pt. II):429–434.

    Google Scholar 

  45. Chaytor, A. T., Martin, P. E. M., Evans, W. H., Randall, M. D., and Griffith, T. M. 1999. The endothelial component of cannabinoid-induced relaxation in rabbit mesenteric artery depends on gap junctional communication. J. Physiol. (London) 520:539–550.

    Google Scholar 

  46. Randall, M. D. and Kendall, D. A. 1998. Endocannabinoids: A novel class of vasoactive substances. Trends Pharmacol. Sci. 19:55–58.

    Google Scholar 

  47. Zygmunt, P. M., Petersson, J., Andersson, J. A., Chuang, H., Sørgård, M., Di Marzo, V., Julius, D., and Högestätt, E. D. 1999. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature (London) 400:452–457.

    Google Scholar 

  48. Di Marzo, V., Breivogel, C. S., Tao, Q., Bridgen, D. T., Razdan, R. K., Zimmer, A. M., Zimmer, A., and Martin, B. R. 2000. Levels, metabolism, and pharmacological activity of anandamide in CB1 cannabinoid receptor knockout mice: Evidence for non-CB1, non-CB2 receptor-mediated actions of anandamide in mouse brain. J. Neurochem. 75:2434–2444.

    Google Scholar 

  49. Adams, I. B., Compton, D. R., and Martin, B. R. 1998. Assessment of anandamide interaction with the cannabinoid brain receptor: SR141716A antagonism studies in mice and autoradiographic analysis of receptor binding in rat brain. J. Pharmacol. Exp. Ther. 284:1209–1217.

    Google Scholar 

  50. Di Marzo, V., Goparaju, S. K., Wang, L., Liu, J., Bátkai, S., Járai, Z., Fezza, F., Miura, G., Palmiter, R. D., Sugiura, T., and Kunos, G. 2001. Leptin-regulated endocannainoids are involved in maintaining food intake. Nature (London) 410:822–825.

    Google Scholar 

  51. Williams, C. M. and Kirkham, T. C. 1999. Anandamide induces overeating: Mediation by central cannabinoid (CB1) receptors. Psychopharmacol. 143:315–317.

    Google Scholar 

  52. Hao, S., Avraham, Y., Mechoulam, R., and Berry, E. M. 2000. Low dose anandamide affects food intake, cognitive function, neurotransmitter and corticosterone levels in diet-restricted mice. Eur. J. Pharmacol. 392:147–156.

    Google Scholar 

  53. Colombo, G., Agabio, R., Diaz, G., Lobina, C., Reali, R., and Gessa, G. L. 1998. Appetite suppression and weight loss after the cannabinoid antagonist SR141716A. Life Sci. 63:PL113–PL117.

    Google Scholar 

  54. Simiand, J., Keane, M., Keane, P. E., and Soubrie, P. 1998. SR141716A, a CB1 cannabinoid receptor antagonist, selectively reduces sweet food intake in marmoset. Behav. Pharmacol. 9:179–181.

    Google Scholar 

  55. Freedland, C. S., Poston, J. S., and Porrino, L. J. 2000. Effects of SR141716A, a central cannabinoid receptor antagonist, on food-maintained responding. Pharmacol. Biochem. Behav. 67:265–270.

    Google Scholar 

  56. Schwartz, M. W., Woods, S. C., Porte, D. Jr., Seeley, R. J., and Baskin, D. G. 2000. Central nervous system control of food intake. Nature (London) 404:661–671.

    Google Scholar 

  57. Friedman, J. M. and Halaas, J. L. 1998. Leptin and the regulation of body weight in mammals. Nature (London) 395:763–770.

    Google Scholar 

  58. Schwartz, M. W., Seeley, R. J., Woods, S. C., Weigle, D. S., Campfield, L. A., Burn, P., and Baskin, D. G. 1997. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46:2119–2123.

    Google Scholar 

  59. Stephens, T. W., Basinski, M., Bristow, P. K., Bue-Valleskey, J. M., Burgett, S. G., Craft, L., Hale, J., Hoffman, J., Hsiung, H. M., and Kriaucinas, A. 1995. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature (London) 377:530–532.

    Google Scholar 

  60. Mechoulam, R. and Fride, E. 2001. A hunger for endocannabinoids. Nature (London) 410:763–765.

    Google Scholar 

  61. Huszar, D., Lynch, C. A., Fairchild-Huntress, V., Dunmore, J. H., Fang, Q., Berkmeier, L. R., Gu, W., Kesterson, R. A., Boston, B. A., Cone, R. D., Smith, F. J., Campfield, L. A., Burn, P., and Lee, F. 1997. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141.

    Google Scholar 

  62. Chen, H., Charlat, O., Tartaglia, L. A., Woolf, E. A., Weng, X., Ellis, S. J., Lakey, N. D., Culpepper, J., Moore, K. J., Breitbart, R. E., Duyk, G. M., Tepper, R. I., and Morgenstern, J. P. 1996. Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495.

    Google Scholar 

  63. Erickson, J. C., Clegg, K. E., and Palmiter, R. D. Sensitivity to leptin and susceptibility to seizures in mice lacking neuropeptide Y. Nature (London) 381:415–421.

  64. Buckley, N. E., McCoy, K. L., Mezey, E., Bonner, T., Zimmer, A. M., Felder, C. C., Glass, M., and Zimmer, A. 2000. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB2 receptor. Eur. J. Pharmacol. 396:141–149.

    Google Scholar 

  65. McKoy, K. L., Gainey, D., and Cabral, G. A. 1995. Delta-9-tetrahydrocannabinol modulates antigen processing by macrophages. J. Pharmacol. Exp. Ther. 273:1216–1223.

    Google Scholar 

  66. Wilson, R. I., Kunos, G., and Nicoll, R. A. 2001. Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron. In press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunos, G., Btákai, S. Novel Physiologic Functions of Endocannabinoids as Revealed Through the Use of Mutant Mice. Neurochem Res 26, 1015–1021 (2001). https://doi.org/10.1023/A:1012301021419

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012301021419

Navigation