Skip to main content
Log in

Biodistribution of Long-Circulating PEG-Grafted Nanocapsules in Mice: Effects of PEG Chain Length and Density

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose: To study the pharmacokinetics and biodistribution of novel polyethyleneglycol (PEG) surface-modified poly(rac-lactide) (PLA) nanocapsules (NCs) and to investigate the influence of PEG chain length and content.

Methods: The biodistribution and plasma clearance in mice of different NC formulations were studied with [3H]-PLA. PLA-PEG copolymers were used in NC preparations at different chain lengths (5 kDa and 20 kDa) and PEG contents (10% and 30% w/w of total polymer). In vitro and in vivo stability were also checked.

Results: Limited [3H]-PLA degradation was observed after incubation in mouse plasma for 1 h, probably because of to the large surface area and thin polymer wall. After injection into mice, NCs prepared with PLA-PEG copolymers showed an altered distribution compared to poloxamer-coated PLA NCs. An increased concentration in plasma was also observed for PLA-PEG NCs, even after 24 h. A dramatic difference in the pharmacokinetic parameters of PLA-PEG 45-20 30% NCs compared to poloxamer-coated NCs indicates that covalent attachment, longer PEG chain lengths, and higher densities are necessary to produce an increased half-life of NCs in vivo.

Conclusions: Covalently attached PEG on the surface of NCs substantially can reduce their clearance from the blood compartment and alter their biodistribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Stolnik, L. Illum, and S. S. Davis. Long circulating microparticulate drug carriers. Adv. Drug Deliv. Rev. 16:195-214 (1995).

    Google Scholar 

  2. D. D. Lasic. Novel applications of liposomes. Trends Biotechnol. 16:307-321 (1998).

    Google Scholar 

  3. P. D. Scholes, A. G. A. Coombes, M. C. Davies, L. Illum, and S. S. Davis. Particle engineering of biodegradable colloids for site-specific drug delivery. In K. Park (ed.), Controlled Drug Delivery: Challenges and Strategies, ACS, Washington, 1997, pp.73-106.

    Google Scholar 

  4. S. Stolnik, S. E. Dunn, M. C. Garnett, M. C. Davies, A. G. A. Coombes, D. C. Taylor, M. P. Irving, S. C. Purkiss, T. F. Tadros, S. S. Davis, and L. Illum. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharm. Res. 11:1800-1808 (1994).

    Google Scholar 

  5. S. E. Dunn, A. G. A. Coombes, M. C. Garnett, S. S. Davis, M. C. Davies, and L. Illum. In vitro cell interaction and in vivo biodistribution of poly(lactide-co-glycolide) nanospheres surface-modified by poloxamer and poloxamine copolymers. J Control. Release 44:65-76 (1997).

    Google Scholar 

  6. M. J. Newmann, M. Balusubramanian, and C. W. Tood. Development of adjuvant-active nonionic block copolymers. Adv. Drug Deliv. Rev. 32:199-223 (1998).

    Google Scholar 

  7. T. Yamaoka, Y. Tabata, and Y. Ikada. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci. 83:601-606 (1994).

    Google Scholar 

  8. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long-circulating polymeric nanospheres. Science 263:1600-1603 (1994).

    Google Scholar 

  9. R. Gref, A. Domb, P. Quellec, T. Blunk, R. H. Müller, J. M. Verbavatz, and R. Langer. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev. 16:215-233 (1995).

    Google Scholar 

  10. T. Verrecchia, G. Spenlehauer, D.V. Bazile, A. Murry-Brelier, Y. Archimbaud, and M. Veillard. Non-stealth (poly(lactic/albumin)) and stealth (poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers. J. Control. Release 36:49-61 (1995).

    Google Scholar 

  11. F. Liu and D. Liu. Long-circulating emulsions (oil-in-water) as carriers for lipophilic drugs. Pharm. Res. 12:1060-1064 (1995).

    Google Scholar 

  12. T. Takino, K. Konishi, Y. Takakura, and M. Hashida. Long circulating emulsion carrier systems for highly lipophilic drugs. Biol. Pharm. Bull. 17:121-125 (1994).

    Google Scholar 

  13. P. Legrand, G. Barratt, V. Mosqueira, H. Fessi, and J. P. Devissaguet. Polymeric nanocapsules as drug delivery systems: a review. S.T.P. Pharma Sci. 9:411-418 (1999).

    Google Scholar 

  14. F. Fawaz, F. Bonini, M. Guyot, A. M. Lagueny, H. Fessi, and J. P. Devissaguet. Disposition and protective effect against irritation after intravenous and rectal administration of indomethacin loaded nanocapsules in rabbits. Int. J. Pharm. 133:107-115 (1996).

    Google Scholar 

  15. V. Lenaerts, A. Labib, F. Chouinard, J. Rousseau, H. Ali, and J. van Lier. Nanocapsules with a reduced liver uptake: targeting of phthalocyanines to EMT-6 mouse mammary tumour in vivo. Eur. J. Pharm. Biopharm. 41:38-43 (1995).

    Google Scholar 

  16. V. C. F. Mosqueira, P. Legrand, R. Gref, B. Heurtault, M. Appel, and G. Barratt. Interactions between a macrophage cell line (J774A1) and surface-modified poly(D,L-lactide) nanocapsules bearing poly(ethylene glycol). J. Drug Target. 7:65-78 (1999).

    Google Scholar 

  17. V.C.F. Mosqueira, P. Legrand, A. Gulik, O. Bourdon, R. Gref, D. Labarre, and G. Barratt. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials, in press.

  18. P. Quellec, R. Gref,, L. Perrin, E. Dellacherie, F. Sommer, Y. M Verbavatz, and M. J. Alonso. Protein encapsulation within polyethylene glycol-coated nanospheres I. Physicochemical characterization. J. Biomed. Mater. Res. 42:45-54 (1998).

    Google Scholar 

  19. H. Fessi, F. Puisieux, J. P. Devissaguet, N. Ammoury, and S. Benita. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 55:R1-R4 (1989).

    Google Scholar 

  20. I. Dos Santos, J. L. Morgat, and M. Vert. Hydrogen isotope exchange as a mean of labeling lactides. J. Label. Compd. Radiopharm. 41:1005-1015 (1998).

    Google Scholar 

  21. C. S. Auletta. Acute, subchronic and chronic toxicology. In M..J. Derelanko and M. A. Hollinger (eds.), CRC Handbook of Toxicology, CRC Press, Boca Raton, 1995, pp. 51-103.

    Google Scholar 

  22. M. Vert, S. Li, and H. Garreau. More about the degradation of (LA/GA) derived matrices in aqueous media. J. Control. Release 16:15-26 (1991).

    Google Scholar 

  23. M. Vert, S. M. Li, G. Spenlehauer, and P. Guerin. Bioresorbability and biocompatibility of aliphatic polyesthers. J. Mater. Sci. Mater Med. 3:432-446 (1992).

    Google Scholar 

  24. F. B. Landry; D. V. Bazile, G. Spenlehauer, M. Veillard, and J. Kreuter. Peroral administration of 14C-poly(D,L-lactic acid) nanoparticles coated with human serum albumin or polyvinyl alcohol to guinea pigs. J. Drug Target. 6:293-307 (1998).

    Google Scholar 

  25. D. Bazile, C. Prud'Homme, M-T. Bassoulet, M. Marlard, G. Spenlehauer, and M. Veillard. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci. 84:493-498 (1995).

    Google Scholar 

  26. C. D. Oja, S. C. Semple, A. Chonn, and P. R. Cullis. Influence of dose on liposome clearance: critical role of blood proteins. Biochim. Biophys. Acta 1281:31-37 (1996).

    Google Scholar 

  27. M. Vittaz, D. Bazile, G. Spenlehauer, T. Verrecchia, M. Veillard, F. Puisieux, and D. Labarre. Effect of PEO density on long-circulating PLA-PEO nanoparticles which are very low complement activators. Biomaterials 17:1575-1581 (1996).

    Google Scholar 

  28. V.C.F. Mosqueira, P. Legrand, H. Pinto-Alphandary, F. Puisieux, and G. Barratt. Poly(D,L-lactide nanocapsules prepared by a solvent displacement process: Influence of the composition on physicochemical and structural properties. J. Pharm. Sci. 89:614-626 (2000).

    Google Scholar 

  29. V. C. F. Mosqueira, P. Legrand, C. Bories, J.Ph. Devissaguet, and G. Barratt. Comparative pharmacokinetics and in-vivo efficacy of an intravenous formulation of halofantrine in long-circulating nanocapsules in Plasmodium berghei-infected mice. Proc. Inter. Symp. Control. Rel. Bioact. Mater. 27:490-491 (2000).

    Google Scholar 

  30. O. Bourdon, V. C. F. Mosqueira, P. Legrand, and J. Blais. A comparative study of the cellular uptake, localization and phototoxicity of meta-tetra(hydroxyphenyl) chlorin encapsulated in surface-modified submicronic oil/water carriers in HT29 tumor cells. J. Photochem. Photobiol. B. 55:164-171 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosqueira, V.C.F., Legrand, P., Morgat, JL. et al. Biodistribution of Long-Circulating PEG-Grafted Nanocapsules in Mice: Effects of PEG Chain Length and Density. Pharm Res 18, 1411–1419 (2001). https://doi.org/10.1023/A:1012248721523

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012248721523

Navigation