Skip to main content
Log in

Effect of Freezing Rate on the Stability of Liposomes During Freeze-Drying and Rehydration

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. In the present study we examined the effect of the freezing protocol on carboxyfluorescein (CF) retention in liposomes after freeze-drying and rehydration.

Methods. Liposomes were frozen slowly at 0.5°C/min, or quickly by submerging the samples in boiling nitrogen before freeze-drying. The thermal behaviour of the frozen dispersions was analysed by Modulated Temperature Differential Scanning Calorimetry (MTDSC). The dried cakes were analysed by SEM, MTDSC and FTIR. The % encapsulated CF of the (re)hydrated liposomes was determined by fluorimetry after GPC, their vesicle size was measured by the Dynamic Light scattering Technique and their bilayer transition was studied by DSC.

Results. Slow freezing resulted in a markedly higher CF retention after freeze-drying and rehydration as compared to quick freezing. The effect of the freezing rate depended on the lipid composition and was most pronounced for rigid liposomes. The damage caused by quick freezing did not occur after a freezing/thawing cycle. The freezing protocol did not influence the interaction between the phospholipids and the lyoprotectants (sucrose, trehalose or glucose) in the freeze-dried state. However, analysis by DSC of dipalmitoylphosphatidylcholine (DPPC): dipalmitoylphosphatidylglycerol (DPPG) =10:1 and DPPC liposome dispersions showed that the freezing protocol affected the bilayer melting characteristics of these liposomes after freeze-drying and rehydration.

Conclusions. A proper design of the freezing protocol is essential to achieve optimal stability of rigid liposomes during a freeze-drying and rehydration cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. C. A. Van Winden, N. J. Zuidam, and D. J. A. Crommelin. In (D. D. Lasic and D. P. Papahadjopoulos, eds.) Medical applications of liposomes, Elsevier, In press.

  2. J. H. Crowe and L. M. Crowe. Biochim. Biophys. Acta 939:327–334 (1988).

    Google Scholar 

  3. J. H. Crowe and L. M. Crowe. In (G. Gregoriadis, eds.) Liposome Technology, Vol. I CRC Press, Inc., Boca Raton, FI., 1993.

    Google Scholar 

  4. J. H. Crowe, S. B. Leslie, and L. M. Crowe. Cryobiology 31:355–366 (1994).

    Google Scholar 

  5. G. Strauss, P. Schurtenberger, and H. Hauser. Biochim. Biophys. Acta 858:169–180 (1986).

    Google Scholar 

  6. D. J. A. Crommelin and E. M. G. Van Bommel. Pharm. Res. 1:159–164 (1984).

    Google Scholar 

  7. E. C. A. Van Winden, B. J. H. Deketh, and D. J. A. Crommelin. submitted.

  8. H. Talsma, M. J. Van Steenbergen, and D. J. A. Crommelin. Int. J. Pharm Sci. 77:119–1126 (1991).

    Google Scholar 

  9. B. Wunderlich, Y. Jin, and A. Boller. Thermochim. Acta 238:277–293 (1994).

    Google Scholar 

  10. M. Reading, A. Luget, and R. Wilson. Thermochim. Acta 238:295–307 (1994).

    Google Scholar 

  11. E. Ralston, L. M. Hjelmeland, R. D. Klausner, J. N. Weinstein, and R. Blumenthal. Biochim. Biophys. Acta 649:133–137 (1981).

    Google Scholar 

  12. W. Zhang, E. C. A. Van Winden, and D. J. A. Crommelin. submitted.

  13. E. C. A. Van Winden, and D. J. A. Crommelin. submitted.

  14. E. C. A. Van Winden, H. Talsma, and D. J. A. Crommelin. submitted.

  15. G. Rouser, S. Fluscher, and A. Yamamoto. Lipids 5:494–496 (1970).

    Google Scholar 

  16. Y. Roos, and M. Karel. Int. J. Food Sci. Technol. 26:553–566 (1991).

    Google Scholar 

  17. M. E. Sahagian and H. D. Goff. Thermochim. Acta 246:271–283 (1994).

    Google Scholar 

  18. S. Ablett, M. J. Izzard, and P. J. Lillford. J. Chem. Soc. Faraday Trans. 88:789–794 (1992).

    Google Scholar 

  19. E. Y. Shalaev, and F. Franks. Cryobiology 33:14–26 (1996).

    Google Scholar 

  20. Y. Roos and M. Karel. J. Food Sci. 56 (1991).

  21. R. H. M. Hatley and F. Franks. J. Therm. Anal. 37:1905–1914 (1991).

    Google Scholar 

  22. J. H. Crowe, L. M. Crowe, J. F. Carpenter, A. S. Rudolph, C. A. Wistrom, B. J. Spargo, and T. J. Anchordoguy. Biophys. Acta 947:367–384 (1988).

    Google Scholar 

  23. L. M. Crowe, and J. H. Crowe. Biochim. Biophys. Acta 946:193–201 (1988).

    Google Scholar 

  24. K. L. Koster, M. S. Webb, G. Bryant, and D. V. Lynch. Biochim. Biophys. Acta 1193:143–150 (1994).

    Google Scholar 

  25. W. C. Mobley and H. Schreier. J. Control. Rel. 31:73–87 (1994).

    Google Scholar 

  26. P. T. T. Wong and H. H. Mantsch. Chem. Phys. Lipids 46:213–244 (1988).

    Google Scholar 

  27. N. J. Zuidam, S. S. L. Lee, and D. J. A. Crommelin. Pharm. Res. 12:1761–1768 (1995).

    Google Scholar 

  28. L. I. Viera, S. Alonso-Romanowski, V. Borovyagin, M. R. Feliz, and E. A. Disalvo. Biochim. Biophys. Acta 1145:157–167 (1993).

    Google Scholar 

  29. K. Tanaka, T. Takeda, K. Fuji, and K. Miyama. Chem. Pharm. Bull. 40:1–5 (1992).

    Google Scholar 

  30. G. Cevc (ed.). Phospholipids Handbook, Marcel Dekker, Inc., New York, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewoud C. A. van Winden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Winden, E.C.A., Zhang, W. & Crommelin, D.J.A. Effect of Freezing Rate on the Stability of Liposomes During Freeze-Drying and Rehydration. Pharm Res 14, 1151–1160 (1997). https://doi.org/10.1023/A:1012142520912

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012142520912

Navigation