Skip to main content
Log in

Liposome-Mediated Therapy of Intracranial Brain Tumors in a Rat Model

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Malignant brain tumors represent a serious therapeutic challenge, and survival often is low. We investigated the delivery of doxorubicin (DXR) to rat brain tumors in situ vialiposomes, to test the hypothesis that intact liposomes undergo deposition in intracranial tumor through a compromised blood-tumor vasculature. Both therapeutic effect and intra-tumor drug carrier distribution were evaluated to identify variables in carrier-mediated delivery having impact on therapy.

Methods. The rat 9L gliosarcoma tumor was implanted orthotopically in Fischer 344 rats in the caudate-putamen region. The tumor-bearing rats were treated with DXR, either free or encapsulated in long-circulating, sterically-stabilized liposomes. Anti-tumor efficacy was assessed by survival time. In parallel, liposomes labeled with a fluorescent phospholipid analog were injected into tumor-bearing rats. At predetermined intervals, the brains were perfused with fixative, sectioned, and imaged with laser scanning confocal microscope (LSCM) to investigate the integrity of the tumor vascular bed and the intratumor deposition of liposomes.

Results. Free DXR given in 3 weekly iv injections was ineffective in increasing the life span of tumor-bearing rats at cumulative doses ≤17 mg/kg, and at the highest dose (17 mg/kg) decreased survival slightly, compared to saline-treated controls. In contrast, DXR encapsulated in long-circulating liposomes mediated significant increases in life span at 17 mg/kg. Rats showed a 29% percent increase in median survival, respectively, compared to saline-control animals. The delay of treatment after tumor implantation was a major determinant of therapeutic effect. Fluorescent liposomes were deposited preferentially in tumor rather than normal brain, and were distributed non-uniformly, in close proximity to tumor blood vessels.

Conclusions. Liposomes can be used to enhance delivery of drugs to brain tumors and increase therapeutic effect. The therapeutic effect may arise from release of drug from liposomes extravasated in discrete regions of the tumor vasculature and the extravascular space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. L. Albright. CA-Cancer J. Clin. 43:272–288 (1993).

    Google Scholar 

  2. E. R. Laws and K. Thapar. CA-Cancer J. Clin. 43:263–271 (1993).

    Google Scholar 

  3. P. C. Burger, F. S. Vogel, S. B. Green, and T. A. Strike. Cancer 56:1106–1111 (1985).

    Google Scholar 

  4. D. F. Deen, A. Chiarodo, E. A. Grimm, J. R. Fike, M. A. Israel, L. E. Kun, V. A. Levin, L. J. Marton, R. J. Packer, A. E. Pegg, M. L. Rosenblum, H. D. Suit, M. D. Walker, C. J. Wikstrand, C. B. Wilson, A. J. Wong, and W. K. Alfred Yung. J. Neuro-Oncol. 16:243–272 (1993).

    Google Scholar 

  5. C. Cordon-Cardo, J. P. O'Brien, D. Casals, L. Rittman-Grauer, J. L. Biedler, M. R. Melamed, and J. R. Bertino. Proc. Natl. Acad. Sci. 86:695–698 (1989).

    Google Scholar 

  6. S. K. Huang, K.-D. Lee, K. Hong, D. S. Friend, and D. Papahadjopoulos. Cancer Res. 52:5135–5143 (1992).

    Google Scholar 

  7. A. A. Gabizon. Cancer Res. 52:891–896 (1992).

    Google Scholar 

  8. D. Papahadjopoulos, T. M. Allen, A. Gabizon, E. Mayhew, K. Matthay, S. K. Huang, K.-D. Lee, M. C. Woodle, D. D. Lasic, C. Redemann, and F. J. Martin. Proc. Natl. Acad. Sci. 88:11460–11464 (1991).

    Google Scholar 

  9. T. Siegal, A. Horowitz, and A. Gabizon. J. Neurosurgery 83:1029–1037 (1995).

    Google Scholar 

  10. N. Z. Wu, D. Da, T. L. Rudoll, D. Needham, A. R. Whorton, and M. W. Dewhirst. Cancer Res. 53:3765–3770 (1993).

    Google Scholar 

  11. F. Yuan, M. Leunig, S. K. Huang, D. A. Berk, D. Papahadjopoulos, and R. K. Jain. Cancer Res. 54:3352–3356 (1994).

    Google Scholar 

  12. I. R. Whittle, J. W. Ironside, I. R. Piper, and J. D. Miller. Acta Neurochir. 120:164–174 (1993).

    Google Scholar 

  13. W. T. Yeung, T. Y. Lee, R. F. Del Maestro, R. Kozak, and T. Brown. J. Neuro-Oncol. 14:177–187 (1992).

    Google Scholar 

  14. M. Wiranowska, A. A. Gonzalvo, S. Saporta, O. R. Gonzalez, and P. L.D. J. Neuro-Oncol. 14:225–236 (1992).

    Google Scholar 

  15. M. Weizsaecker, D. F. Deen, M. L. Rosenblum, T. Hoshino, P. H. Gutin, and M. Barker. J. Neurol. 224:183–192 (1981).

    Google Scholar 

  16. L. Huang, R. Straubinger, S. Kahl, M. Koo, J. Alletto, R. Mazurchuk, R. Chau, S. Thamer, and R. Fiel. J. Magnetic Resonance Imaging 3:351–356 (1993).

    Google Scholar 

  17. T. Yamashima, T. Ohnishi, Y. Nakajima, T. Terasaki, M. Tanaka, J. Yamashita, T. Sasaki, and A. Tsuji. Exp. Brain. Res. 95:41–50 (1993).

    Google Scholar 

  18. R. J. Tamargo, J. S. Myseros, J. I. Epstein, M. B. Yang, M. Chasin, and H. Brem. Ca. Res. 53:329–333 (1993).

    Google Scholar 

  19. H. Brem, R. J. Tamargo, A. Olivi, M. Pinn, J. D. Weingart, M. Wharam, and J. I. Epstein. J. Neurosurg. 80:283–290 (1994).

    Google Scholar 

  20. K. Toth, M. M. Vaughan, N. S. Peress, H. K. Slocum, and Y. M. Rustum. Am. J. Pathol. 149:853–858 (1996).

    Google Scholar 

  21. T. D. Madden, P. R. Harrigan, L. C. Tai, M. B. Bally, L. D. Mayer, T. E. Redelmeier, H. C. Loughrey, C. P. Tilcock, R. L. W., and P. R. Cullis. Chem. Phys. Lipids 53:37–46 (1990).

    Google Scholar 

  22. A. Gabizon, R. Shiota, and D. Papahadjopoulos. J. Natl. Cancer Inst. 81:1484–1488 (1989).

    Google Scholar 

  23. Y.-K. Oh, and R. M. Straubinger. Pharm. Res. 10:S-191 (1993).

    Google Scholar 

  24. J. Parsons, D. Bellnier, P. Johnson, A. Oseroff, A. Sharma, R. Bernacki, and W. Greco. Proc. Am. Assoc. Cancer Res. 36:609 (1995).

    Google Scholar 

  25. K. D. Lee, K. Hong, and D. Papahadjopoulos. Biochim. Biophys. Acta 1103:185–197 (1992).

    Google Scholar 

  26. A. Sharma, N. L. Straubinger, and R. M. Straubinger. Pharm. Res. 10:1434–1441 (1993).

    Google Scholar 

  27. A. T. Horowitz, Y. Barenholz, and A. A. Gabizon. Biochim. Biophys. Acta 1109:203–209 (1993).

    Google Scholar 

  28. T. D. Heath, and C. S. Brown. J. Liposome Res. 1:303–317 (1989).

    Google Scholar 

  29. K. A. Walter, R. J. Tamargo, A. Olivi, P. C. Burger, and H. Brem. Neurosurgery 37:1128–1145 (1995).

    Google Scholar 

  30. H. Brem, S. Piantadosi, P. C. Burger, M. Walker, R. Selker, N. A. Vick, K. Black, M. Sisti, S. Brem, G. Mohr, and et al. Lancet 345:1008–1012 (1995).

    Google Scholar 

  31. Z. A. Tokes, A. K. St. Peteri, and J. A. Todd. Brain Res. 188:282–286 (1980).

    Google Scholar 

  32. M. J. Micklus, N. H. Greig, J. Tung, and S. I. Rapoport. Biochim. Biophys. Acta 1124:7–12 (1992).

    Google Scholar 

  33. R. K. Jain. Cancer Res. 50:814s–819s (1990).

    Google Scholar 

  34. A. Gabizon, and D. Papahadjopoulos. Proc. Natl. Acad. Sci. 85:6949–6953 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Straubinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, U.S., Sharma, A., Chau, R.I. et al. Liposome-Mediated Therapy of Intracranial Brain Tumors in a Rat Model. Pharm Res 14, 992–998 (1997). https://doi.org/10.1023/A:1012136925030

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012136925030

Navigation