Skip to main content
Log in

Restricted Intestinal Absorption of Some β-Lactam Antibiotics by an Energy-Dependent Efflux System in Rat Intestine

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this study was to examine factors limiting the intestinal absorption of orally inactive β-lactam antibiotics.

Methods. Permeation behaviors of various β-lactam antibiotics across rat intestinal segments were evaluated in vitro using diffusion cells.

Results. Poorly absorbed β-lactam antibiotics, like cephaloridine and cefoperazone, commonly exhibit greater serosal-to-mucosal permeation than mucosal-to-serosal permeation, while cephalexin permeation was greater in the mucosal-to-serosal direction. In the absence of D-glucose, secretory-oriented permeation of cephaloridine and cefoperazone disappeared. Addition of sodium azide into an experimental buffer including D-glucose significantly and selectively enhanced mucosal-to-serosal permeation of cephaloridine and cefoperazone. Although benzylpenicillin, ampicillin, and amoxicillin all showed secretory-oriented permeation, the tendency to permeation was greatest with benzylpenicillin and least with amoxicillin. Probenecid stimulated mucosal-to-serosal permeation of cephaloridine, but verapamil and p-aminohippuric acid had no significant effect on it.

Conclusions. It has been suggested that mechanisms which induce secretory-oriented permeation of orally inactive β-lactam antibiotics are factors limiting intestinal absorption of such antibiotics. This energy-demanding efflux system was distinct from P-glycoprotein-mediated transport. A free α-amino group in the molecule is an important factor for reducing an affinity with the efflux system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Bergan. Scand. J. Infect. Dis. Suppl. 42:83–98 (1984).

    PubMed  Google Scholar 

  2. S. M. Catnach, P. D. Fairclough, and S. M. Hammond. Gut 35:441–444 (1994).

    PubMed  Google Scholar 

  3. C. H. Gochoco, F. M. Ryan, J. Miller, P. L. Smith, and I. J. Hidalgo. Int. J. Pharm. 104:187–202 (1994).

    Google Scholar 

  4. M. Sugawara, H. Saitoh, K. Iseki, K. Miyazaki, and T. Arita. J. Pharm. Pharmacol. 42:314–318 (1989).

    Google Scholar 

  5. H. Saitoh, C. Gerard, and B. J. Aungst. J. Pharmacol. Exp. Ther. 278:205–211 (1996).

    PubMed  Google Scholar 

  6. B. J. Aungst and H. Saitoh. Pharm. Res. 13:114–119 (1996).

    PubMed  Google Scholar 

  7. G. M. Grass and S. A. Sweetana. Pharm. Res. 5:372–376 (1988).

    PubMed  Google Scholar 

  8. I. Tamai, A. Tsuji, and Y. Kin. J. Pharmacol. Exp. Ther. 246:338–344 (1988).

    PubMed  Google Scholar 

  9. J. Hunter, M. A. Jepson, T. Tsuruo, N. L. Simmons, and B. H. Hirst. J. Biol. Chem. 268:14991–14997 (1993).

    PubMed  Google Scholar 

  10. P. F. Augustijns, T. P. Bradshaw, L.-S. L. Gan, R. W. Hendren, and D. R. Thakker. Biochem. Biophys. Res. Commun. 197:360–365 (1993).

    PubMed  Google Scholar 

  11. P.-F. Bai, P. Subramanian, H. I. Mosberg, and G. L. Amidon. Pharm. Res. 8:593–599 (1991).

    PubMed  Google Scholar 

  12. D.-M. Oh, P. J. Sinko, and G. L. Amidon. J. Pharm. Sci. 82:897–900 (1993).

    PubMed  Google Scholar 

  13. K. Iseki, K. Mori, K. Miyazaki, and T. Arita. Biochem. Pharmacol. 36:1837–1842 (1987).

    PubMed  Google Scholar 

  14. I. J. Hidalgo, F. M. Ryan, G. J. Marks, and P. L. Smith. Int. J. Pharm. 98:83–92 (1993).

    Google Scholar 

  15. J. F. Poschet, S. M. Hammond, and P. D. Fairclough. Biochim. Biophys. Acta 1278:233–240 (1996).

    PubMed  Google Scholar 

  16. H. Yuasa, G. L. Amidon, and D. Fleisher. Pharm. Res. 10:400–404 (1993).

    PubMed  Google Scholar 

  17. A. Tsuji, T. Terasaki, K. Takanosu, I. Tamai, and E. Nakashima. Biochem. Pharmacol. 35:151–158 (1986).

    PubMed  Google Scholar 

  18. H. Suzuki, Y. Sawada, Y. Sugiyama, T. Iga, and M. Hanano. J. Pharmacol. Exp. Ther. 242:660–665 (1987).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saitoh, H., Fujisaki, H., Aungst, B.J. et al. Restricted Intestinal Absorption of Some β-Lactam Antibiotics by an Energy-Dependent Efflux System in Rat Intestine. Pharm Res 14, 645–649 (1997). https://doi.org/10.1023/A:1012113430539

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012113430539

Navigation