Skip to main content
Log in

Interaction Between Polyalkylcyanoacrylate Nanoparticles and Peritoneal Macrophages: MTT Metabolism, NET Reduction, and NO Production

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The nature of interactions between macrophages and drug carriers is of primordial importance either in the design of more effective therapeutic strategies for macrophage-associated pathogenesis or in establishing new approaches for pharmacological action avoiding macrophages.

Methods. Polyalkylcyanoacrylate nanoparticles (PMCA, PECA, PBCA and PIBCA nanoparticles) were assayed for their toxicity on peritoneal resident and thioglycolate-elicited macrophages. Cellular viability was assessed by MTT tetrazolium salt assay, oxidative burst by NBT reduction and NO production by nitrite evaluation.

Results. The nanoparticles tested led to cellular morphological modifications and induced toxicity in both types of macrophages in culture. The polyalkylcyanoacrylate nanoparticles uptake by peritoneal macrophages caused an increase in respiratory burst, as assessed by the NBT reduction assay, and induced the release of soluble toxic factors to the culture medium. The association of LPS with the PMCA nanoparticles significantly stimulated the production of nitric oxide (NO) by resident macrophages. In contrast, the association of PBCA nanoparticles with LPS does not increase the nitrite production as compared with LPS alone, which may be due to a different physico-chemical interaction between LPS and the two types of polymers.

Conclusions. In cultured mice peritoneal macrophages, nanoparticles of PACA induce the production of oxygen reactive products, which cause changes in the cell metabolism of both resident and elicited macrophages. PMCA nanoparticles in association with LPS significantly increase the expression of the inducible isoform of nitric oxide synthase, leading to the release of large amount of NO, which may be highly cytotoxic to the cultured cells in the presence of peroxide generated from the oxidative burst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. Kreuter. Eur. J. Drug Metab. and Pharmacokinetics 3:253–256 (1994).

    Google Scholar 

  2. E. M. Gipps, P. Groscurth, J. Kreuter, and P. P. Speiser. J. Pharm. Sci. 77:208–209 (1988).

    PubMed  Google Scholar 

  3. K. Decker. Eur. J. Biochem. 192:245–261 (1990).

    PubMed  Google Scholar 

  4. U. K. Meßmer, E. G. Lapetina, and B. Brüne. Molecular Pharmacol. 47:757–765 (1995).

    Google Scholar 

  5. A. E. Stuart, J. A. Habeshaw, and A. E. Davidson. In D. M. Weir, Cellular Immunology, Blackwell Scientific Publications, Oxford-London-Edinburgh-Melbourne, 1973, pp 24.1–24.26.

    Google Scholar 

  6. R. Gaspar, V. Préat, F. R. Opperdoes, and M. Roland. Pharm. Res. 9:782–787 (1992).

    PubMed  Google Scholar 

  7. C. Verdun, P. Couvreur, H. Vranckx, V. Lenaerts, and M. Roland. J. Control. Rel. 3:205–210 (1986).

    Google Scholar 

  8. M. C. Lopes, L. Guilhermino, A. Donato, L. Silveira, A. M. V. M. Soares, and A. P. Carvalho. Toxic. in vitro 8:831–834 (1994).

    Google Scholar 

  9. E. Pick. Methods Enzymol. 132:407–421 (1986).

    PubMed  Google Scholar 

  10. J. E. Ogden and P. K. Moore. Trends in Biotechnol. 13:70–78 (1995).

    Google Scholar 

  11. C. Lourenço, M. Teixeira, S. Simões, and R. Gaspar. Int. J. Pharm. 138:1–12 (1996).

    Google Scholar 

  12. E. M. Gipps, P. Groscurdl, J. Kreuter, and P. Speiser. Int. J. Pharm. 40:23–31 (1987).

    Google Scholar 

  13. C. Lherm, R. H. Müller, F. Puisieux, and P. Couvreur. Int. J. Pharm. 84:13–22 (1992).

    Google Scholar 

  14. H. Pinto-Alphandary, O. Balland, M. Laurent, A. Andremont, F. Puisieux, and P. Couvreur. Pharm. Res. 11:38–46 (1994).

    PubMed  Google Scholar 

  15. C. E. Alford, T. E. King, and P. A. Campbell. J. Exp. Med. 174:459–466 (1991).

    PubMed  Google Scholar 

  16. F. Nemati, C. Dubernet, A. Colin de Verdière, M. F. Pouppon, L. Treupel-Acar, F. Puisieux, and P. Couvreur. Int. J. Pharm. 102:55–62 (1994).

    Google Scholar 

  17. L. Vansnick, P. Couvreur, D. Leyh, and M. Roland. Pharm. Res. 1:203–208 (1985).

    Google Scholar 

  18. V. Lenaerts, P. Couvreur, D. Christiaens-Leyh, E. Joiris, M. Roland, B. Rollman, and P. Speiser. Biomaterials 5:65–68 (1984).

    PubMed  Google Scholar 

  19. M. Stein and E. Hamacher. Int. J. Pharm. 80:R11–R13 (1992).

    Google Scholar 

  20. R. Fernández-Urrusuno, E. Fattal, D. Porquet, J. Féger, and P. Couvreur. Pharm. Res. 12:1385–1387 (1995).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério Gaspar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz, T., Gaspar, R., Donato, A. et al. Interaction Between Polyalkylcyanoacrylate Nanoparticles and Peritoneal Macrophages: MTT Metabolism, NET Reduction, and NO Production. Pharm Res 14, 73–79 (1997). https://doi.org/10.1023/A:1012059501947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012059501947

Navigation