Skip to main content
Log in

Molecular Mobility of Supercooled Amorphous Indomethacin, Determined by Dynamic Mechanical Analysis

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To determine the viscosity and the frequency-dependent shear modulus of supercooled indomethacin as a function of temperature near and above its glass transition temperature and from these data to obtain a quantitative measure of its molecular mobility in the amorphous state.

Methods. Viscoelastic measurements were carried with a controlled strain rheometer in the frequency domain, at 9 temperatures from 44° to 90°C.

Results. The viscosity of supercooled indomethacin shows a strong non-Arrhenius temperature dependence over the temperature range studied, indicative of a fragile amorphous material. Application of the viscosity data to the VTF equation indicates a viscosity of 4.5 × 1010 Pa.s at the calorimetric Tg of 41°C, and a T0 of −17°C. From the complex shear modulus and the Cole-Davidson equation the shear relaxation behaviour is found to be non-exponential, and the shear relaxation time at Tg is found to be approximately 100 sec.

Conclusions. Supercooled indomethacin near and above its Tg exhibits significant molecular mobility, with relaxation times similar to the timescales covered in the handling and storage of pharmaceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. Gutzow, D. Kashchiev, and I. Avramov. J. Non-Crystalline Solids 73:477–499 (1985).

    Google Scholar 

  2. M. Yoshioka, B. C. Hancock, and G. Zografi. J. Pharm. Sci. 83:1700–1705 (1994).

    Google Scholar 

  3. M. Yoshioka, B. C. Hancock, and G. Zografi. J. Pharm. Sci 84:983–986 (1995).

    Google Scholar 

  4. V. Andronis, M. Yoshioka, and G. Zografi. J. Pharm. Sci. in press.

  5. B. C. Hancock, S. L. Shamblin, and G. Zografi. Pharm. Res. 12:799–806 (1995).

    Google Scholar 

  6. J. D. Ferry. Viscoelastic Properties of Polymers, John Wiley & Sons, New York, 1980.

    Google Scholar 

  7. W. Gotze. Aspects of Structural Glass Transitions. In J. P. Hansen, D. Levesque, and J. Zinn-Justin (Ed), Liquids, Freezing and Glass Transition, Les Houches, Session LI, Elsevier, 1991.

  8. J. L. Schrag. Trans. Soc. Rheol. 21:399–404 (1977).

    Google Scholar 

  9. R. Bohmer, K. L. Ngai, C. A. Angell, and D. J. Plazek. J. Chem. Phys. 99:4201–4209 (1993).

    Google Scholar 

  10. M. L. Williams, R. F. Landel, and J. D. Ferry. J. Am. Chem. Soc. 77:3701–3707 (1995).

    Google Scholar 

  11. M. H. Cohen and D. Turnbull. J. Chem. Phys. 31:1164–1169 (1959).

    Google Scholar 

  12. D. Turnbull and M. H. Cohen. J. Chem. Phys. 34:120–125 (1961).

    Google Scholar 

  13. M. H. Cohen and G. S. Crest. Phys. Rev. B. 20:1077–1082 (1979).

    Google Scholar 

  14. G. Adam and J. H. Gibbs. J. Chem. Phys. 43:139–146 (1965).

    Google Scholar 

  15. D. J. Plazek and J. H. Magill. J. Chem. Phys. 45:3038–3050 (1966).

    Google Scholar 

  16. R. J. Greet and D. Turnbull. J. Chem. Phys. 46:1243–1251 (1967).

    Google Scholar 

  17. N. Menon, S. R. Nagel, and D. C. Venerus. Phys. Rev. Lett. 73:963–966 (1994).

    Google Scholar 

  18. D. W. Davidson. Can. J. Chem. 39:571–594 (1961).

    Google Scholar 

  19. C. P. Lindsey and G. D. Patterson. J. Chem. Phys. 73:3348–3357 (1980).

    Google Scholar 

  20. G. Harrison. The Dynamic Properties of Supercooled Liquids, Academic Press, London, 1976.

    Google Scholar 

  21. R. Richert. J. non-Cryst. Solids. 172–174: 209–213 (1994).

    Google Scholar 

  22. G. Williams, M. Cook, and P. J. Hains. J. Chem. Soc. Faraday Trans. II 2:1045–1051 (1972).

    Google Scholar 

  23. M. D. Ediger, C. A. Angell, and S. R. Nagel. J. Phys. Chem. 100:13200–13212 (1996).

    Google Scholar 

  24. H. Imaizumi, N. Nambu, and T. Nagai. Chem. Pharm. Bull. 28:2565–2569 (1980).

    Google Scholar 

  25. M. Otsuka and N. Kaneniwa. Chem. Pharm. Bull. 36:4026–4032 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Zografi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andronis, V., Zografi, G. Molecular Mobility of Supercooled Amorphous Indomethacin, Determined by Dynamic Mechanical Analysis. Pharm Res 14, 410–414 (1997). https://doi.org/10.1023/A:1012026911459

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012026911459

Navigation