Skip to main content
Log in

Permeation of Unfolded Basic Fibroblast Growth Factor (bFGF) Across Rabbit Buccal Mucosa—Does Unfolding of bFGF Enhance Transport?

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate whether recombinant human basic fibroblast growth factor (rhbFGF) would permeate freshly-excised rabbit buccal mucosa. In addition, the effect of a permeation enhancer (Na+ glycocholate) and the possibility of reversibly unfolding the globular protein to a more linear conformation to increase the permeability of the test protein was evaluated.

Methods. Thein vitro flux of bFGF through freshly-excised rabbit buccal mucosa was determined using side-by-side diffusion systems. Detection of bFGF was performed using gradient elution, reversed-phase high-pressure liquid chromatography (RP-HPLC). Fluorescence spectroscopy and heparin affinity chromatography were used to assess the tertiary structure of bFGF.

Results. Preliminary in vitro results have demonstrated that the bFGF flux increased from 1.4 ± 0.13 ng min−1 cm−2 to 3.2 ± 0.38 ng min−1 cm−2 with the addition of 15 mM Na+ glycocholate (NaG) to the donor solution. Subsequent addition of guanidine HC1 (GnHCl) to the donor solution (3 M) was not followed by a further increase in the flux of bFGF (2.9 ± 0.26 ng min−1 cm−2). However, when the order of addition of the additives was reversed (GnHCl first followed by NaG), the flux of bFGF across rabbit buccal mucosa was increased. Upon addition of GnHCl, there was a significant (p < .05) increase in bFGF flux from 1.2 ± 0.15 ng min−1 cm−2 to 5.0 ± 0.58 ng min−1 cm−2. Addition of NaG further increased the flux to 8.5 ± 1.1 ng min−1 cm−2 which was approximately 3- to 3.5-fold greater than that determined with the protein alone in the absence of any donor phase additives. The percent of parent bFGF remaining following a 3-hr exposure of a bFGF solution to either the mucosal, serosal, or both sides of rabbit buccal mucosa were 54.3 ± 5.7%, 71.8 ± 6.3%, and 36.2 ± 5.4%, respectively with the majority of parent bFGF lost during the first 15 minutes. A model endopeptidase (endoproteinase Arg-C from mouse submaxillary gland) was shown in vitro to contribute to the loss in parent bFGF.

Conclusions. The permeation of bFGF across rabbit buccal mucosa may be significantly increased by initially unfolding the protein with GnHCl and then treating the tissue with the permeation enhancer, NaG. Refolding and possible reactivation of bFGF's bioactivity may occur following membrane transport and subsequent dilution into an infinite sink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Harris and J. R. Robinson. J. Pharm. Sci. 81:1–10 (1992).

    Google Scholar 

  2. M. E. Dowty, K. E. Knuth, B. K. Irons, and J. R. Robinson. Pharm. Res. 9:1113–1122 (1992).

    Google Scholar 

  3. R. Anders, H. P. Merkle, W. Schurr, and R. Ziegler. J. Pharm. Sci. 72:1481–1483 (1983).

    Google Scholar 

  4. W. Schurr, B. Knoll, R. Ziegler, R. Anders, and H. P. Merkle. J. Endocrinol. Invest. 8:41–44 (1985).

    Google Scholar 

  5. N. F. H. Ho and C. L. Barsuhn. Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 16:24–25 (1989).

    Google Scholar 

  6. M. E. Dowty, B. K. Irons, K. E. Knuth, and J. R. Robinson. Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 17:Abstract D342 (1990).

  7. C. Li, R. L. Koch, V. A. Raul, P. P. Bhatt, and T. P. Johnston. Drug Dev. Indust. Pharm. 23:245–252 (1997).

    Google Scholar 

  8. Y. Nakada, N. Awata, C. Nakamichi, and I. Sugimoto. J. Pharmacobio-Dyn. 11:394–401 (1988).

    Google Scholar 

  9. S. J. Heiber, C. D. Ebert, S. C. Dave, K. Smith, S. W. Kim, and D. Mix. J. Cont. Rel. 28:269–270 (1994).

    Google Scholar 

  10. A. J. Hoogstraate, J. C. Verhoef, A. Pijpers, L. A. M. G. van Leengoed, J. H. M. Verheijden, H. E. Junginger, and H. E. Bodde. Pharm. Res. 13:1233–1237 (1996).

    Google Scholar 

  11. S. J. Warren, I. W. Kellaway, and P. Timmins. Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 16:402–403 (1989).

    Google Scholar 

  12. S. J. Warren, I. W. Kellaway, and P. Timmins. J. Pharm. Pharmacol. 42:140P (1990).

    Google Scholar 

  13. G. J. M. Wolany, J. Munzer, A. Rummelt, and H. P. Merkle. Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 17:Abstract D341 (1990).

  14. C. Li, P. P. Bhatt, and T. P. Johnston. Pharm. Devel. Technol. 1:357–364 (1996).

    Google Scholar 

  15. S. Nakane, M Kakumoto, K. Yukimatsu, and Y. W. Chien. Pharm. Devel. and Technol. 1:251–259 (1996).

    Google Scholar 

  16. J. A. Fix. J. Pharm. Sci. 85:1282–1285 (1996).

    Google Scholar 

  17. R. Gandhi and J. R. Robinson. Int. J. Pharm. 85:129–135 (1992).

    Google Scholar 

  18. B. J. Aungst. In M. J. Rathbone (ed), Oral Mucosal Drug Delivery, Marcel Dekker, New York, 1996, pp. 65–83.

    Google Scholar 

  19. B. J. Aungst and N. J. Rogers. Pharm. Res. 5:305–308 (1988).

    Google Scholar 

  20. B. J. Aungst. In D. S. Hsieh (ed), Drug Permeation Enhancement: Theory and Applications, Marcel Dekker, New York, 1994, pp. 323–343.

    Google Scholar 

  21. K. Tamura, C. P. Lee, P. L. Smith, and R. T. Borchardt. Pharm. Res. 13:1752–1754 (1996).

    Google Scholar 

  22. B. Yang and K. Knutson. Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 22:13–14 (1995).

    Google Scholar 

  23. S. Gangwar, S. D. S. Jois, T. J. Siahaan, D. G. Vander Velde, V. J. Stella, and R. T. Borchardt. Pharm. Res. 13:1657–1662 (1996).

    Google Scholar 

  24. S. Tandon and P. M. Horowitz. Biochimica et Biophysica Acta 955:19–25 (1988).

    Google Scholar 

  25. S. Tandon and P. M. Horowitz. J. Biol. Chem. 262:4486–4491 (1987).

    Google Scholar 

  26. S. Tandon and P. M. Horowitz. J. Biol. Chem. 261:15615–15618-4491 (1986).

    Google Scholar 

  27. D. B. Wetlaufer and Y. Xie. Prot. Sci. 4:1535–1543 (1995).

    Google Scholar 

  28. J. D. McVittie, M. P. Esnouf, and A. R. Peacocke. Eur. J. Biochem. 81:307–315 (1977).

    Google Scholar 

  29. P. M. Horowitz and D. Simon. J. Biol. Chem. 261:13887–13891 (1986).

    Google Scholar 

  30. V. Sluzky, Z. Shahrokh, P. Stratton, G. Eberlein, and Y. J. Wang. Pharm. Res. 11:485–490 (1994).

    Google Scholar 

  31. W. Rick. In H. U. Bergmeyer (ed), Methods of Enzymatic Analysis, 2nd edition, Vol. II, Academic Press, New York, 1974, pp. 1021–1024.

    Google Scholar 

  32. Y. J. Wang, Z. Shahrokh, S. Vemuri, G. Eberlein, I. Beylin, and M. Busch. In R. Pearlman and Y. J. Wang (eds), Formulation, Characterization, and Stability of Protein Drugs, Plenum Press, New York, 1996, pp. 141–180.

    Google Scholar 

  33. Y. Li, Z. Shao, and A. K. Mitra. Pharm. Res. 9:864–869 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, T.P., Rahman, A., Alur, H. et al. Permeation of Unfolded Basic Fibroblast Growth Factor (bFGF) Across Rabbit Buccal Mucosa—Does Unfolding of bFGF Enhance Transport?. Pharm Res 15, 246–253 (1998). https://doi.org/10.1023/A:1011966602179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011966602179

Navigation