Skip to main content
Log in

Chitosan and Its Use as a Pharmaceutical Excipient

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Chitosan has been investigated as an excipient in the pharmaceutical industry, to be used in direct tablet compression, as a tablet disintegrant, for the production of controlled release solid dosage forms or for the improvement of drug dissolution. Chitosan has, compared to traditional excipients, been shown to have superior characteristics and especially flexibility in its use. Furthermore, chitosan has been used for production of controlled release implant systems for delivery of hormones over extended periods of time. Lately, the transmucosal absorption promoting characteristics of chitosan has been exploited especially for nasal and oral delivery of polar drugs to include peptides and proteins and for vaccine delivery. These properties, together with the very safe toxicity profile, makes chitosan an exciting and promising excipient for the pharmaceutical industry for present and future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. N. Errington, S. E. Harding, K. M. Vårum, and L. Illum. Hydrodynamic characterisation of chitosan varying in molecular weight and degree of acetylation. Int. J. Biol. Macromol. 15:1123–117 (1993).

    Google Scholar 

  2. P. A. Sandford and G P Hutchings. Chitosan—A natural cationic biopolymer. In “Industrial Polysaccharides: Genetics Engineering, Structure/Properties Relations and Applications”. M. Yalpani (Ed.), Elsevier Science B.V., Amsterdam, pp 363–376 (1987).

    Google Scholar 

  3. T. Mitani, C. Nakalima, I. E. Sungkano, and H. Ishii. Effects of ionic strength on the adsorption of heavy metals by swollen chitosan beads. J. Environ. Sci. Health Part. A. Environ. Sci. Eng. Toxic. 30:669–674 (1995).

    Google Scholar 

  4. A. G. Imeri and D. Knorr. Effects of chitosan on yield and compositional data of carrot and apple juice. J. Food Sci. 53:1707–1710 (1988).

    Google Scholar 

  5. P. Stossel and J. L Leuba. Effect of chitosan, chitin and some aminosugars on growth of various soilborne phytopathogenic fungi. Phytopathology and Zoology 111:82–90 (1984).

    Google Scholar 

  6. R. A. A. Muzzarelli. Amphoteric derivatives of chitosan and their biological significance. In “Chitin and Chitosan Sources. Chemistry, Biochemistry, Physical Properties and Applications”, G. Skajk-Braek, T. Antonsen, P. Sanford (eds), Elsevier Applied Sciences, London, 1989.

    Google Scholar 

  7. P. Gross, E. Konrad, and H. Mager. Patent application DE PS 262714, (1976).

  8. J. Dutkiewicz, L. Judkiewicz, A. Papiewski, M. Kucharska, and R. Ciszewski. Some uses of krill chitosan as biomaterial. In “Chitin and Chitosan, Chemistry, Biochemistry, Physical Properties and Applications”, G. Skjak-Braek, T. Anthonsen, P. Sandford (eds) Elsevier Applied Sciences, London (1989).

    Google Scholar 

  9. G. G. Allan, L. C. Altman, R. E. Bensinger, D. K. Ghosh, Y. Hirabayashi, A. N. Neogi, and S. Neogi. Biomedical application of chitin and chitosan. In “Chitin, Chitosan and Related Enzymes, J. P. Zikakis (ed), Academic Press, Inc., (1984).

  10. M. Sugano, T. Fujikawa, Y. Hiratsuji, K. Nakashima, N. Fukuda, and Y. Hasegawa. A novel use of chitosan as a hypocholesterolemic agent in rats. Am. J. Clin. Nutr. 33:787–793 (1980).

    PubMed  Google Scholar 

  11. Y. Sawayanagi, N. Nambu, and T. Nagai. Directly compressed tablets containing chitin or chitosan in addition to lactose or potato starch. Chem. Pharm. Bull. 30:2935–2940 (1982).

    PubMed  Google Scholar 

  12. G. C. Ritthidej, P. Chomto, S. Pummangura, and P. Menasveta. Chitin and chitosan as disintegrants in paracetamol tablets. Drug Devel. Ind. Pharm. 20:2109–2134 (1994).

    Google Scholar 

  13. S. M. Upadrashta, P. R. Katikaneni, and N. O. Nuessle. Chitosan as a tablet binder. Drug Devel. Ind. Pharm. 18:1701–1708 (1992).

    Google Scholar 

  14. T. Nagai, Y. Sawayanagi, and N. Nambu. Application of chitin and chitosan to pharmaceutical preparations. In “Chitin, Chitosan and Related Enzymes, J. P. Zikakis (ed), Academic Press, Inc., pp 21–40 (1984).

  15. A. G. Nigalaye, P. Adusumilli, and S. Bolton. Investigation of prolonged drug release from matrix formulations of chitosan. Drug. Devel. Ind. Pharm. 16:449–467 (1990).

    Google Scholar 

  16. T. Miyazaki, T. Komuro, C. Yomota, and S. Okada. Usage of chitosan as a pharmaceutical material: effectiveness as an additional additives of sodium alginate. Eisei Shikenjo Hokoku 108:95–97 (1990).

    PubMed  Google Scholar 

  17. Y. Kawashima, T. Handa, A. Kasai, H. Takenaka, and S. Y. Lin. The effects of thickness and hardness of the coating film on the drug release rate of theophylline granules coated with chitosansodium tripolyphosphate complex. Chem. Pharm. Bull. 33:2469–2474 (1985).

    PubMed  Google Scholar 

  18. J. Akbuga. The effect of physicochemical properties of a drug on its release from chitosan malate tablets. Int. J. Pharm. 100:257–261 (1993).

    Google Scholar 

  19. Y. Kawashima, S. Y. Lin, A. Kasai, T. Handa, and H. Takenaka. Preparation of a prolonged release tablet of aspirin with chitosan. Chem. Pharm. Bull. 33:2107–2113 (1985).

    PubMed  Google Scholar 

  20. S. Miyazaki, K. Ishii, and T. Nadai. The use of chitin and chitosan as drug carriers. Chem. Pharm. Bull. 29:3067–3069 (1981).

    PubMed  Google Scholar 

  21. J. Kristl, J. Smid-Korbar, E. Strue, M. Schara, and H. Rupprecht. Hydrocolloids and gels of chitosan as drug carriers. Int. J. Pharm. 99:13–19 (1993).

    Google Scholar 

  22. J. Knapczyk. Chitosan hydrogel as a base for semisolid drug forms. Int. J. Pharm. 93:233–237 (1993).

    Google Scholar 

  23. Y. Sawayanagi, N. Nambu, and T. Nagai. Enhancement of dissolution properties of griseofulvin from ground mixtures with chitin and chitosan. Chem. Pharm. Bull. 30:4464–4467 (1982).

    Google Scholar 

  24. W.-M. Hou, S. Miyazaki, M. Takada, and T. Komai. Sustained release of indomethacin from chitosan granules. Chem. Pharm. Bull. 33:3986–3992 (1985).

    PubMed  Google Scholar 

  25. K. Takayama, M. Hirata, Y. Machida, T. Masada, T. Sannan, and T. Nagai. Effect of interpolymer complex formation on bioadhesive property and drug release phenomenon of compressed tablets consisting of chitosan and sodium hyaluronate. Chem. Pharm. Bull. 38:1993–1997 (1990).

    PubMed  Google Scholar 

  26. H. Tozaki, J. Komoike, C. Tada, T. Maruyama, A. Terabe, T. Suzuki, A. Yamamoto, and S. Muranishi. Chitosan capsules for colon-specific drug delivery: improvement of insulin absorption from the rat colon. J. Pharm. Sci. 86:1016–1021 (1997).

    PubMed  Google Scholar 

  27. Y. Nishioka, S. Kyotani, M. Okamura, M. Miyazaki, K. Okazaki, S. Ohnishi, Y. Yamamoto, and K. Ito. Release characteristics of cisplatin chitosan microspheres and effect of containing chitin. Chem. Pharm. Bull. 38:2871–2873 (1990).

    PubMed  Google Scholar 

  28. S. R. Jameela and A. Jayakrishnan. Glutaraldehyde crosslinked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials 16:769–775 (1995).

    PubMed  Google Scholar 

  29. J. Akbuga and G. Durmaz. Preparation and evaluation of cross-linked chitosan microspheres containing furosemide. Int. J. Pharm. 111:217–222 (1994).

    Google Scholar 

  30. Z. Aydin and J. Akbuga. Chitosan beads for the delivery of salmon calcitonin: preparation and release characteristics. Int. J. Pharm. 131:101–103 (1996).

    Google Scholar 

  31. F.-L. Mi, T.-B. Wong, and S.-S. Shyu. Sustained-release of oxytet-racycline from chitosan microspheres prepared by interfacial acylation and spray hardening methods. J. Microencapsulation 14:577–591 (1997).

    PubMed  Google Scholar 

  32. K. Aiedeh, E. Gianasi, I. Orienti, and V. Zecchi. Chitosan microcapsules as controlled release systems for insulin. J. Microencapsulation 14:567–576 (1997).

    PubMed  Google Scholar 

  33. P. Calvo, C. Remunan-Lopez, J. L. Vila-Jato, and M. J. Alonso. Chitosan and chitosan/ethylene oxide propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res. 14:1431–1436 (1997).

    PubMed  Google Scholar 

  34. L. Y. Lim, L. S. C. Wan, and P. Y. Thai. Chitosan microspheres prepared by emulsification and ionotropic gelation. Drug Devel. Ind. Pharm. 23:981–985 (1997).

    Google Scholar 

  35. A. Polk, B. Amsden, K. De Yao, T. Peng, and F. A. Goosen. Controlled release of albumin from chitosan-alginate microcapsules. J. Pharm. Sci. 83:178–185 (1994).

    PubMed  Google Scholar 

  36. C. Remunan-Lopez and R. Bodmeier. Effect of formulation and process variables on the formation of chitosan-gelatin coacervates. Int. J. Pharm. 135:63–72 (1996).

    Google Scholar 

  37. L.-S. Liu, S.-Q. Liu, S. Y. Ng, M. Froix, T. Ohno, and J. Heller. Controlled release of interleukin-2 for tumour immunotherapy using alginate/chitosan porous microspheres. J. Control. Rel. 43:65–74 (1997).

    Google Scholar 

  38. L. L. Balassa and J. F. Prudden. Application of chitin and chitosan in wound-healing acceleration. in “Proc. 1st Int. Conf. Chitin/Chitosan”, R. A. A. Muzzarelli and E. R. Pariser (eds), MIT Press, Cambridge, MA, USA (1978).

    Google Scholar 

  39. W. G. Malette, J. Quigley, and E. D. Adickes. Chitosan effect in vascular surgery, tissue culture and tissue regeneration. In “Chitin in Nature and Technology”, R. Muzzarelli, C. Jeuniaux, and G. W. Gooday (eds), Plenum Press, NY (1986).

    Google Scholar 

  40. L. Illum, N. F. Farraj, and S. S. Davis. Chitosan as a novel nasal delivery system for peptide drugs. Pharm. Res. 11:1186–1189 (1994).

    PubMed  Google Scholar 

  41. L. Illum. The nasal route for delivery of polypeptides. In “Peptide and Protein Drug Delivery”, S. Frøkjær, L. Christrup, and P. Krogsgaard-Larsen (eds.), Munksgaard, Copenhagen (1998).

    Google Scholar 

  42. C.-O. Rentel, C.-M. Lehr, J. A. Bouwstra, H. L. Luessen, and H. E. Junginger. Enhanced peptide absorption by the mucoadhesive polymers polycarbophil and chitosan. Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 20:446–447 (1993).

    Google Scholar 

  43. N. G. M. Schipper, K. M. Vårum, and P. Artursson. Chitosan as absorption enhancers for poorly absorbed drugs 1: Influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial Caco-2 cells. Pharm. Res. 13:1668–1692 (1996).

    PubMed  Google Scholar 

  44. N. G. M. Schipper, S. Olsson, J. A. Hoogstraate, A. G. deBoer, K. M. Vårum, and P. Artursson. Chitosan as absorption enhancers for poorly absorbed drugs 2: Mechanism of absorption enhancement. Pharm. Res. 14:923–929 (1997).

    PubMed  Google Scholar 

  45. H. L. Luessen. “Multifunctional polymers for peroral peptide drug absorption”, Labor Vincit, Leiden (1996).

    Google Scholar 

  46. I. Jabbal-Gill, A. N. Fisher, R. Rappuoli, S. S. Davis, and L. Illum. Stimulation in mice of mucosal and systemic antibody responses against Bordetella pertussis filamentous haemagglutinin and recombinant pertussis toxin after nasal administration with chitosan. Vaccine (in press).

  47. J. Makin, A. Bacon, M. Roberts, P. J. Sizer, I. Jabbal-Gill, M. Hinchcliffe, L. Illum, and S. Chatfield. Carbohydrate biopolymers enhance antibody response to mucosally delivered vaccine antigens (submitted for publication).

  48. P. Artursson, T. Lindmark, S. S. Davis, and L. Illum. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res. 11:1358–1361 (1994).

    PubMed  Google Scholar 

  49. V. Dodane, M. A. Khan, and J. R. Merwin. Effect of chitosan on epithelial permeability and structure. (submitted for publication).

  50. T. Aspden, L. Illum, and Ø. Skaugrud. The effect of chronic nasal application of chitosan solution on cilia beat frequency in guinea pigs. Int. J. Pharm. 153:137–146 (1997).

    Google Scholar 

  51. T. Aspden, J. Adler, S. S. Davis, Ø. Skaugrud, and L. Illum. Chitosan as a nasal delivery system: Evaluation of the effect of chitosan on mucociliary clearance rate in the frog palate model. Int. J. Pharm. 122:69–78 (1995).

    Google Scholar 

  52. T. J. Aspden, J. D. T. Mason, N. Jones, J. Lowe, Ø. Skaugrud, and L. Illum. Chitosan as a nasal delivery system: The effect of chitosan on in vitro and in vivo mucociliary transport rates. J. Pharm. Sci. 86:509–513 (1997).

    PubMed  Google Scholar 

  53. T. Aspden, L. Illum, and Ø. Skaugrud. Chitosan as a nasal delivery system: Evaluation of insulin absorption ednhancement and effect on nasal membrane integrety using rat models. Eur. J. Pharm. Sci. 4:23–31 (1996).

    Google Scholar 

  54. K. Arai, T. Kinumaki, and T. Fujita. Toxicity of chitosan. Bull. Tokai Reg. Fish Lab. 43:89–94 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilium, L. Chitosan and Its Use as a Pharmaceutical Excipient. Pharm Res 15, 1326–1331 (1998). https://doi.org/10.1023/A:1011929016601

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011929016601

Navigation