Skip to main content
Log in

Stealth PLA-PEG Nanoparticles as Protein Carriers for Nasal Administration

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The aim of the study was to encapsulate a model protein antigen, tetanus toxoid (TT), within hydrophobic (PLA) and surface hydrophilic (PLA-PEG) nanoparticles and to evaluate the potential of these colloidal carriers for the transport of proteins through the nasal mucosa.

Methods. TT-loaded nanoparticles, prepared by a modified water-in-oil-in-water solvent evaporation technique, were characterized in their size, zeta potential and hydrophobicity. Nanoparticles were also assayed in vitro for their ability to deliver active antigen for extended periods of time. Finally, 125I-TT-loaded nanoparticles were administered intranasally to rats and the amount of radioactivity recovered in the blood compartment, lymph nodes and other relevant tissues was monitored for up to 48 h.

Results. PLA and PLA-PEG nanoparticles had a similar particle size (137-156 nm) and negative surface charge, but differed in their surface hydrophobicity: PLA were more hydrophobic than PLA-PEG nanoparticles. PLA-PEG nanoparticles, especially those containing gelatine as an stabilizer, provided extended delivery of the active protein. The transport of the radiolabeled protein through the rat nasal mucosa was highly affected by the surface properties of the nanoparticles: PLA-PEG nanoparticles led to a much greater penetration of TT into the blood circulation and the lymph nodes than PLA nanoparticles. Furthermore, after administration of 125I-TT-loaded PLA-PEG nanoparticles, it was found that a high amount of radioactivity persisted in the blood compartment for at least 48 h.

Conclusions. A novel nanoparticulate system has been developed with excellent characteristics for the transport of proteins through the nasal mucosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. T. Florence. Pharm. Res. 14:259–266 (1997).

    Google Scholar 

  2. H. O. Alpar, J. C. Bowen, and M. R. W. Brown. Int. J. Pharm. 88:335–344 (1992).

    Google Scholar 

  3. D. T. O'Hagan. Clin. Pharmacokinet. 22:335–344 (1992).

    Google Scholar 

  4. P. Wüthrich and P. Buri. Pharm. Acta Helvetiae 64:322–331 (1989).

    Google Scholar 

  5. A. E. Pontirolli. J. Control. Rel. 13:247–251 (1990).

    Google Scholar 

  6. A. J. Almeida and H. O. Alpar. J. Drug Targ. 3:455–467 (1996).

    Google Scholar 

  7. C. F. Kuper, P. J. Koornstra, D. M. H. Hameleers, J. Biewenga, B. J. Spit, A. M. Duijvestijn, P. J. C. van Bedra, and T. Smimia. Immunol. Today 13:219–224 (1992).

    Google Scholar 

  8. E. Abraham. Vaccine 10:461–468 (1992).

    Google Scholar 

  9. J. C. Bowen, O. Alpar, R. Phillpots, I. S. Roberts, and M. R. W. Brown. J. Lipos. Res. 5:193–214 (1995).

    Google Scholar 

  10. A. J. Almeida, H. O. Alpar, and M. R. W. Brown. J. Pharm. Pharmacol. 45:198–203 (1993).

    Google Scholar 

  11. J. H. Eldridge, C. J. Hammond, J. A. Meulbroek, J. K. Staas, R. M. Gilley, and T. R. Tice. J. Control. Rel. 11:205–214 (1990).

    Google Scholar 

  12. R. Gref., Y. Minimitake, M. T. Perracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Science 263:1600–1603 (1994).

    Google Scholar 

  13. M. T. Peracchia, R. Gref, Y. Minimitake, A. Domb, N. Lotan, and R. Langer. J. Control. Rel. 46:223–231 (1997).

    Google Scholar 

  14. Y. Minimitake, R. Gref, J. S. Hrkach, M. T. Peracchia, A. Domb, and R. Langer. Macromolecules (Submitted).

  15. M. D. Blanco and M. J. Alonso. Eur. J. Pharm. Biopharm. 43:287–294 (1997).

    Google Scholar 

  16. H. Carstensen, B. W. Muller, and R. H. Muller. Int. J. Pharm. 67:29–37 (1991).

    Google Scholar 

  17. M. J. Alonso, S. Cohen, T. G. Park, R. K. Gupta, G. Siber, and R. Langer. Pharm. Res. 10:945–953 (1993).

    Google Scholar 

  18. A. E. Hawley, L. Illum, and S. S. Davis. Pharm. Res. 14:657–203 (1997).

    Google Scholar 

  19. M. J. Alonso, B. Villamayor, M. Tobío, S. Schwendeman, R. K. Gupta, G. Siber, and R. Langer. Proceed. Intern. Symp. Rel. Bioact. Mater. 23:825–826 (1996).

    Google Scholar 

  20. M. Tobío and M. J. Alonso. Proceed. Intern. Symp. Rel. Bioact. Mater. 24:425–426 (1997).

    Google Scholar 

  21. D. Bazile, C. Prud'homme, M. T. Bassoulet, M. Marlard, G. Spenlehauer, and M. Veillard. J. Pharm. Sci. 84:493–498 (1995).

    Google Scholar 

  22. S. Stolnik, S. E. Dunn, M. C. Garnett, M. C. Davis, A. G. A. Coombes, D. C. Taylor, M. P. Irving, S. C. Purkiss, T. F. Tadros, S. S. Davis, and L. Illum. Pharm. Res. 11:1800–1808 (1994).

    Google Scholar 

  23. A. T. Florence and P. U. Jani. Pharmaceutical Particulate Carriers, Marcel Dekker, New York, 1993, pp. 65–108.

    Google Scholar 

  24. H. O. Alpar, A. J. Almeida, and M. R. W. Brown. J. Drug Targeting 2:147–149 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobío, M., Gref, R., Sánchez, A. et al. Stealth PLA-PEG Nanoparticles as Protein Carriers for Nasal Administration. Pharm Res 15, 270–275 (1998). https://doi.org/10.1023/A:1011922819926

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011922819926

Navigation