Skip to main content
Log in

Correlation Between Oral Drug Absorption in Humans, and Apparent Drug Permeability in TC-7 Cells, A Human Epithelial Intestinal Cell Line: Comparison with the Parental Caco-2 Cell Line

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To determine and compare the relationship between in vivo oral absorption in humans and the apparent permeability coefficients (P app ) obtained in vitro on two human intestinal epithelial cell lines, the parental Caco-2 and the TC-7 clone.

Methods. Both cell lines were grown for 5−35 days on tissue culture-treated inserts. Cell monolayers were analysed for their morphology by transmission electron micrography, and for their integrity with respect to transepithelial electrical resistance, mannitol and PEG-4000 transport, and cyclosporin efflux. P app were determined for 20 compounds exhibiting large differences in chemical structure, molecular weight, transport mechanisms, and percentage of absorption in humans.

Results. The TC-7 clone exhibits morphological characteristics similar to those of the parental Caco-2 cell line, concerning apical brush border, microvilli, tight junctions and polarisation of the cell line. The TC-7 clone however appeared more homogenous in terms of cell size. Both cell lines achieved a similar monolayer integrity towards mannitol and PEG-4000. Monolayer integrity was achieved earlier for the TC-7 clone, mainly due to its shorter doubling time, i.e. 26 versus 30 hours for parental Caco-2 cells. When using cyclosporin A as a P-glycoprotein substrate, active efflux was lower in the TC-7 clone than in the parental Caco-2 cells. The Papp and mechanisms of transport (paracellular or transcellular routes, passive diffusion and active transport) were determined for 20 drugs. A relationship was established between the in vivo oral absorption in humans and Papp values, allowing to determine a threshold value for Pappof 2 10−6 cm/sec, above for which a 100% oral absorption could be expected in humans. Both correlation curves obtained with the two cell types, were almost completely superimposable. These studies also confirmed that the dipeptide transporter is underexpressed in both cell lines.

Conclusions. On the basis of morphological parameters, biochemical activity and drug transport characteristics, the TC-7 clone appeared to be a valuable alternative to the use of parental Caco-2 cells for drug absorption studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. Artursson. Cell culture as models for drug absorption across the intestinal mucosa. Crit. Rev. Ther. Drug Carrier System 8:105–130 (1991).

    Google Scholar 

  2. J. Fogh, J. M. Fogh, and T. Orfeo, 127 Cultured human colon cell lines producing tumors in nude mice. J. Natl. Acad. Sci. U.S.A. 59:221–226 (1977).

    Google Scholar 

  3. M. Pinto, S. Robine-Leon, M. D. Appay, M. Kedinger, N. Triadou, E. Dussaulx, B. Lacroix, P. Simon-Assmann, K. Haffen, J. Fogh, and A. Zweibaum. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell. 47:323–330 (1983).

    Google Scholar 

  4. M. D. Peterson and M. S. Mooseker. Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line Caco-2. J. Cell Sci. 102:581–600 (1992).

    PubMed  Google Scholar 

  5. A. R. Hilgers, R. A. Conradi, and P. S. Burton. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res. 7:902–910 (1990).

    PubMed  Google Scholar 

  6. G. Wilson, I. F. Hassan, C. J. Dix, I. Williamson, R. Shah, M. Mackay, and P. Artursson. Transport and permeability properties of human Caco-2 cells: an in vitro model of the intestinal epithelial cell barrier. J. Controlled Rel. 11:25–40 (1990).

    Google Scholar 

  7. E. K. Anderberg and P. Artursson. Epithelial transport of drugs in cell culture. VIII: Effects of sodium dodecyl sulfate on cell membrane and tight junction permeability in human intestinal epithelial Caco-2 cells. J. Pharm. Sci. 82:392–398 (1993).

    PubMed  Google Scholar 

  8. R. T. Borchardt, I. J. Hidalgo, K. M. Hillgren, and M. Hu. Pharmaceutical applications of cell culture: an overview. In Pharmaceutical applications of cell and tissue culture to drug transport, G. Wilson, S. S. Davis, L. Illum, and A. Zweibaum (eds.) Vol. 218, pp. 1–14, 1991 Plenum Press, New York.

    Google Scholar 

  9. R. A. Conradi, A. R. Hilgers, N. F. H. Ho, and P. S. Burton. The influence of peptide structure on transport across Caco-2 cells. Pharm. Res. 8:1453–1460 (1991).

    PubMed  Google Scholar 

  10. I. J. Hidalgo and R. T. Borchardt. Transport of bile acids in a human intestinal epithelial cell line, Caco-2. Biochim. Biophys. Acta 1035:97–103 (1990).

    PubMed  Google Scholar 

  11. J. N. Cogburn, M. G. Donovan, and C. S. Schasteen. Correlation of Caco-2 transport with human oral bioavailability. J. Controlled Release 13: 314–315 (1990).

    Google Scholar 

  12. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749 (1989).

    PubMed  Google Scholar 

  13. B. H. Stewart, O. H. Chan, R. H. Lu, E. L. Reyner, H. L. Schmid, H. W. Hamilton, B. A. Steinbaugh, and M. D. Taylor. Comparison of intestinal permeabilities determined in multiple in vitro and in situ models: relationship to absorption in humans. Pharm. Res. 12:693–699 (1995).

    PubMed  Google Scholar 

  14. W. Rubas, N. Jezyk, and G. M. Grass. Comparison of the permeability characteristics of a human colonic epithelial (Caco-2) cell line to colon of rabbit, monkey, and dog intestine and human drug absorption. Pharm. Res. 10:113–118 (1993).

    PubMed  Google Scholar 

  15. S. Woodcock, I. Williamson, I. Hassan, and M. Mackay. Isolation and characterization of clones from Caco-2 cell line displaying increased taurocholic acid transport. J. Cell Sci. 98:323–332 (1991).

    PubMed  Google Scholar 

  16. I. Chantret, A. Rodolosse, A. Barbat, E. Dussaulx, E. Brot-Laroche, A. Zweibaum, and M. Rousset. Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for a glucose-dependent negative regulation. J. Cell. Sci. 107:213–25 (1994).

    PubMed  Google Scholar 

  17. L. Mahraoui, A. Rodolosse, A. Barbat, E. Dussaulx, A. Zweibaum, M. Rousset, and E. Brot-Laroche. Presence and differential expression of SGLT1, GLUT1, GLUT2, GLUT3 and GLUT5 hexose transporters mRNAs in Caco-2 cell clones in relation to cell growth and glucose consumption. Biochem J. (1994).

  18. I. Caro, X. Boulenc, M. Rousset, V. Meunier, M. Bourrié, B. Julian, H. Joyeux, C. Roques, Y. Berger, A. Zweibaum, and G. Fabre. Characterisation of a newly isolated Caco-2 clone (TC-7), as a model of transport processes and biotransformation of drugs. Int. J. Pharm. 116:147–58 (1995).

    Google Scholar 

  19. X. Boulenc, E. Marti, C. Roques, H. Joyeux, Y. Berger, and G. Fabre. Importance of the paracellular pathway for the transport of a new bisphosphonate using the human Caco-2 monolayers model. Biochem. Pharmacol. 46:1591–1600 (1993).

    PubMed  Google Scholar 

  20. M. Neutra and H. Padykula. in: L. Weiss (Ed.), Histology: Cell and Tissue Biology, Elsevier, Amsterdam, pp. 658–660 (1983).

    Google Scholar 

  21. P. Artursson and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial Caco-2 cells. Biochem. Biophys. Res. Commun. 175:880–885 (1991).

    PubMed  Google Scholar 

  22. P. Artursson, A.-L. Ungell, and J.-E. Löfroth. Selective paracellular permeability in two models of intestinal absorption: cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm. Res. 10:1123–1129 (1993).

    PubMed  Google Scholar 

  23. L. Borgström, L. Nyberg, S. Jönsson, C. Lindberg, and J. Paulson. Pharmacokinetic evaluation in man of terbutaline given as separate enantiomers and as the racemate. Br. J. Clin. Pharmacol. 27:49–56 (1989).

    PubMed  Google Scholar 

  24. V. S. Chadwick, S. F. Phillips, and A. F. Hofmann. Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). Gastroenterology 73:241–246 (1977).

    PubMed  Google Scholar 

  25. S. Chong, S. A. Dando, K. M. Soucek, and R. A. Morrison. In vitro permeability through Caco-2 cells is not quantitatively predictive of in vivo absorption for peptide-like drugs absorbed via the dipeptide transporter system. Pharm. Res. 13:120–123 (1996).

    PubMed  Google Scholar 

  26. Clarke's Isolation and Identifying of drugs, 2nd edition. Ed. A. C. Moffat. The Pharmaceutical Press, London (1986).

    Google Scholar 

  27. G. M. Gray and F. J. Ingelfinger. Intestinal absorption of sucrose in man: interrelation of hydrolysis and monosaccharide product absorption. J. Clin. Invest. 45:388–398 (1966).

    PubMed  Google Scholar 

  28. H. Lennernäs, K. Palm, U. Fagerholm, and P. Artursson. Comparison between active and passive drug transport in human intestinal epithelial (Caco-2) cells in vitro and human jejunum in vivo. Int. J. Pharm. 127:103–107 (1996).

    Google Scholar 

  29. Martindale, 27th edition. Ed. A. Wade. The pharmaceutical Press, London (1977).

    Google Scholar 

  30. P. Nicolas, B. R. Meyers and S. Z. Hirschman. Cephalexin: Pharmacological evaluation following oral and parenteral administration. J. Clin. Pharmacol. November–December, 463–468 (1973).

  31. R. J. Ptachinski, R. Venkatamaranan, and G. J. Burckart. Clinical pharmacokinetic of cyclosporin. Clin. Pharmacokin. 11:107–132 (1986).

    Google Scholar 

  32. A. Sandberg. Extended-release metoprolol. Doctorial Thesis, Uppsala (1994).

  33. B. H. Stewart, A. R. Kugler, P. R. Thompson, and H. N. Bockbrader. A saturable transport mechanism in the intestinal absorption of gabapentin is the underlying cause of the lack of proportionality between increasing dose and drug levels in plasma. Pharm. Res. 10:276–281 (1993).

    PubMed  Google Scholar 

  34. K. C. H. Yeh, T. F. August, D. F. Bush, K. C. Lasseter, D. G. Musson, S. Schwartz, M. E. Smith, and D. C. Titus. Pharmacokinetics and bioavailability of Sinemet C: a summary of human studies. Neurol. 39:25–35 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grès, MC., Julian, B., Bourrié, M. et al. Correlation Between Oral Drug Absorption in Humans, and Apparent Drug Permeability in TC-7 Cells, A Human Epithelial Intestinal Cell Line: Comparison with the Parental Caco-2 Cell Line. Pharm Res 15, 726–733 (1998). https://doi.org/10.1023/A:1011919003030

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011919003030

Navigation