Skip to main content
Log in

Large-scale production of a therapeutic protein in transgenic tobacco plants: effect of subcellular targeting on quality of a recombinant dog gastric lipase

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A recombinant dog gastric lipase with therapeutic potential for the treatment of exocrine pancreatic insufficiency was expressed in transgenic tobacco plants. We targeted the protein using two different signal sequences for either vacuolar retention or secretion. In both cases, an active glycosylated recombinant protein was obtained. The recombinant enzymes and the native enzyme displayed similar properties including acid resistance and acidic optimum pH. The proteolytic maturation and the specific activity of the recombinant proteins, however, were found to be dependent on subcellular compartmentalization. Expression levels of recombinant dog gastric lipase were about 5% and 7% of acid extractable plant proteins for vacuolar retention and secretion respectively. This expression system already has allowed the production of tens of grams of purified lipase through open-field culture of transgenic tobacco plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An G. 1986. Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol. 81: 86–91.

    Google Scholar 

  • Bénicourt C., Blanchard C., Carrière F., Verger R; and Junien J.L. 1993a. Potential use of a recombinant dog gastric lipase as an enzymatic supplement to pancreatic extracts in cystic fibrosis. In: Escobar H., Baquero C.F. and Suarez L. (eds.), Clinical Ecology of Cystic Fibrosis. Elsevier Science Publishers Amsterdam, pp. 291–295.

    Google Scholar 

  • Bénicourt C., Blanchard C. and Junien J.L. 1993b. Naturally occurring rabbit gastric lipase. US patent 5,075,231, EP patent 0 261 016.

  • Bernbäck S. and Bläckberg L. 1989. Human gastric lipase: the N-terminal tetrapeptide is essential for lipid binding and lipase activity. Eur. J. Biochem. 182: 495–499.

    Google Scholar 

  • Blanchard C., Bénicourt C. and Junien J.L. 1994. Recombinant canine gastric lipase and pharmaceutical compositions. PCT Patent Appl. WO 94/13816.

  • Carrière F., Moreau H., Raphel V., Laugier R., Bénicourt C., Junien J.L. and Verger R. 1991. Purification and biochemical characterization of dog gastric lipase. Eur. J. Biochem. 202: 75–83.

    Google Scholar 

  • Cramer C.L., Weissenborn D.L., Oishi K.K., Grabau E.A., Bennett S., Ponce E., Grabowski G.A. and Radin D.N. 1996. Bioproduction of human enzymes in transgenic tobacco. In: Collins G.B. and Shepherd R.J. (eds.), Engineering Plants for Commercial Products and Applications. New York Academy of Sciences, New York, pp. 62–71.

    Google Scholar 

  • De Caro J., Ferrato F., Verger R. and De Caro A. 1995. Purification and molecular characterization of lamb pregastric lipase. Biochim. Biophys. Acta. 1252: 321–329.

    Google Scholar 

  • Dieryck W., Pagnier J., Poyart C., Marden M.C., Gruber V., Bournat P., Baudino S. and Merot B. 1997. Human haemoglobin from transgenic tobacco. Nature 385: 29–30.

    Google Scholar 

  • Fischer R., Liao Y.-C., Hoffmann K., Schillberg S. and Emans N. 1999. Molecular farming of recombinant antibodies in plants. Biol. Chem. 380: 825–839.

    Google Scholar 

  • Gargouri Y., Pieroni G., Rivière C., Saunière J.F., Sarda L. and Verger R. 1986. Kinetic assay of human gastric lipase on shortand long-chain triacylglycerol emulsions. Gastroenterology 91: 919–925.

    Google Scholar 

  • Geli M.I., Torrent M. and Ludevid D. 1994. Two structural domains mediated two sequential events in γ-zein targeting: protein endoplasmic reticulum retention and protein body formation. Plant Cell 6: 1911–1922.

    Google Scholar 

  • Grill L.K. 1997. Viral-vectored, large scale production of drugs and pharmaceuticals in plants. Presentation at IBCs 3rd Annual International Symposium on Producing the Next Generation of Therapeutics: Exploiting Transgenic Technologies, West Palm Beach, FL.

  • Guerineau F. and Mullineaux P. 1993. Plant transformation and expression vectors. In: Croy R.R.D. (ed.), Plant Molecular Biology Labfax. BIOS Scientific Publishers, Oxford, UK, pp. 121–147.

    Google Scholar 

  • Guilley H., Dudley R.K., Jonard G., Balazs E. and Richards K.E. 1982. Transcription of cauliflower mosaic virus DNA: detection of promoter sequences and characterization of transcripts. Cell 30: 763–773.

    Google Scholar 

  • Hamosh M. 1990. Role of lingual and gastric lipase in fat digestion and absorption. In: Hamosh M. (ed.), Lingual and Gastric Lipases: Their Role in Fat Digestion. CRC Press, Boca Raton, FL, pp 179–227.

    Google Scholar 

  • Haq T.A., Mason H.S., Clements J.D. and Arntzen C.J. 1995. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268: 714–716.

    Google Scholar 

  • Hara-Nishimura I., Inoue K. and Nishimura M. 1991. A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. Eur. J. Biochem. 294: 89–93.

    Google Scholar 

  • Hara-Nishimura I. Shimada T. Hiraiwa N. and Nishimura M. 1995. Vacuolar processing enzyme responsible for maturation in seed proteins. J. Plant Physiol. 145: 632–640.

    Google Scholar 

  • Higo K., Saito Y. and Higo H. 1993. Expression of a chemically synthesized gene for human epidermal growth factor under the control of cauliflower mosaic virus 35S promoter in transgenic tobacco. Biosci. Biotechnol. Biochem. 57: 1477–1481.

    Google Scholar 

  • Holsters M. De Waele D., Depicker A., Messens E., Van Montagu M. and Schell J. 1978. Transfection and transformation of A. tumefaciens. Mol Gen Genet 163: 181–187.

    Google Scholar 

  • Hood E.E. and Jilka J.M. 1999. Plant-based production of xenogenic proteins. Curr. Opin. Biotechnol. 10: 382–386.

    Google Scholar 

  • Horsch R.B., Fry J.E., Hoffmann N.L., Eichholtz D., Rogers S.G. and Fraley R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Google Scholar 

  • Joliff G., Vaganay S., Legay C. and Bénicourt C. 1998. Secretion of an active recombinant dog gastric lipase from baculovirusinfected insect cells. Biotechnol. Lett. 20: 697–702.

    Google Scholar 

  • Kapusta J., Modelska A., Figlerowicz M., Pniewski T., Letellier M., Lisowa O., Yusibov V., Koprowski H., Plucienniczak A. and Legocki A.B. 1999. A plant-derived edible vaccine against hepatitis B virus. FASEB J. 13: 1796–1799.

    Google Scholar 

  • Kay R., Chan A., Dayly M. and McPherson J. 1987. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236: 1299–1302.

    Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 277: 680–685.

    Google Scholar 

  • Larrick J.W., Yu L., Chen J., Jaiswal S. and Wycoff K. 1998. Production of antibodies in transgenic plants. Res. Immunol. 149: 603–608.

    Google Scholar 

  • Ma J.K.C. and Hiatt A. 1996. Expressing antibodies in plants for immunotherapy. In: Owen M.R.L. and Pen J. (eds.), Transgenic Plants: a Production System for Industrial and Pharmaceutical Proteins. Wiley, Chichester, UK, pp. 229–243.

    Google Scholar 

  • Ma S., Zhao D., Yin A., Mukherjee R., Singh B., Qin H., Stiller C.R. and Jevnikar A.M. 1997. Transgenic plants expressing autoantigens fed to mice to induce oral immune tolerance. Nat. Med. 3: 793–796.

    Google Scholar 

  • Mason H.S., Lam D.M. and Arntzen C.J. 1992. Expression of hepatitis-B surface antigen in transgenic plants. Proc. Natl. Acad. Sci. USA 89: 11745–11749.

    Google Scholar 

  • Matsumoto S., Ikura K., Ueda M. and Sasaki R. 1995. Characterization of a human glycoprotein (erythropoietin) produced in cultured tobacco cells. Plant Mol. Biol. 27: 1163–1172.

    Google Scholar 

  • Matsuoka K. and Nakamura K. 1991. Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc. Natl. Acad. Sci. USA 88: 834–838.

    Google Scholar 

  • Moreau H., Gargouri Y., Lecat D., Junien J.L. and Verger R. 1988a. Screening of preduodenal lipases in several mammals. Biochim. Biophys. Acta 959: 247–252.

    Google Scholar 

  • Moreau H., Gargouri Y., Lecat D., Junien J.L. and Verger R. 1988b. Purification, characterization and kinetic properties of the rabbit gastric lipase. Biochim. Biophys. Acta 960: 286–293.

    Google Scholar 

  • Moreau H., Wickert-Planquart C., Canaan S., Riviere M. and Dupuis L. 1999. Site-directed removal of N-glycosylation sites in human gastric lipase. Eur. J. Biochem. 262: 1–9.

    Google Scholar 

  • Ruggiero F. Exposito J.-Y. Bournat P., Gruber V., Perret S., Comte J., Olagnier B. Garrone R. and Theisen M. 2000. Triple helix assembly and processing of human collagen produced in transgenic tobacco plants. FEBS Lett. 469: 132–136.

    Google Scholar 

  • Salmon V., Legrand D., Slomianny M.C., El Yazidi I., Spik G., Gruber V., Bournat P., Olagnier B., Mison D., Theisen M., and Merot B. 1998. Production of human lactoferrin in transgenic tobacco plants. Protein Expr. Purif. 13, 127–135.

    Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular cloning. A Laboratory Manual, 2n ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J. and Klenk D.C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76–85.

    Google Scholar 

  • Tacket C.O., Mason H.S., Losonsk G., Clements J.D., Levine M.M. and Arntzen C.J. 1998. Immunogenicity in humans of a recombinant bacterial antigen delivered in transgenic potato. Nat. Med. 4: 607–609.

    Google Scholar 

  • von Heijne G. 1983. Patterns of amino acids near signal-sequence cleavage sites. Eur. J. Biochem. 133: 17–21.

    Google Scholar 

  • Walden R., Koncz C. and Schell J. 1990. The use of gene vectors in plant molecular biology. Methods Mol. Cell. Biol. 1: 175–194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruber, V., Berna, P.P., Arnaud, T. et al. Large-scale production of a therapeutic protein in transgenic tobacco plants: effect of subcellular targeting on quality of a recombinant dog gastric lipase. Molecular Breeding 7, 329–340 (2001). https://doi.org/10.1023/A:1011653220724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011653220724

Navigation