Skip to main content
Log in

The expression of a maize glutathione S-transferase gene in transgenic wheat confers herbicide tolerance, both in planta and in vitro

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Maize (Zea mays), in common with a number of other important crop species, has several glutathione S-transferase (GST) isoforms that have been implicated in the detoxification of xenobiotics via glutathione conjugation. A cDNA encoding the maize GST subunit GST-27, under the control of a strong constitutive promoter, was introduced into explants of the wheat (Triticum aestivum L.) lines cv. Florida and L88-31 via particle bombardment, using the phosphinothricin acetyltransferase (pat) gene as a selectable marker. All six independent transgenic wheat lines recovered expressed the GST-27 gene. T1 progeny of these wheat lines were germinated on solid medium containing the chloroacetanilide herbicide alachlor, and tolerance to this herbicide was correlated with GST-27 expression levels. In glasshouse sprays, homozygous T2 plants were resistant not only to alachlor but also to the chloroacetanilide herbicide dimethenamid and the thiocarbamate herbicide EPTC. These additional GST-27 activities, demonstrated via over-expression in a heterologous host, have not been described previously. T2 plants showed no enhanced tolerance to the herbicides atrazine (an s-triazine) or oxyfluorfen (a diphenyl ether). In further experiments, T2 wheat plants were recovered from immature transgenic scutella cultured on medium containing 100 mg/l alachlor, a concentration which killed null segregant and wild-type scutella. These data indicate the potential of the maize GST-27 gene as a selectable marker in wheat transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altpeter F., Vasil V., Srivastava V., Stoger E. and Vasil I.K. 1996. Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep. 16: 12–17.

    Google Scholar 

  • Altpeter F., Diaz I., McAuslane H., Gaddour K., Carbonero P. and Vasil I.K. 1999. Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol. Breed. 5: 53–63.

    Google Scholar 

  • Barcelo P. and Lazzeri P.A. 1995. Transformation of cereals by microprojectile bombardment of immature inflorescence and scutellum tissues. In: Jones H. (ed.), Methods in Molecular Biology, Vol. 49: Plant Gene Transfer and Expression Protocols. Humana Press, Totowa, NJ, pp. 113–123.

    Google Scholar 

  • Barro F., Rooke L., Békés F., Gras P., Tatham A.S., Fido R., Lazzeri P.A., Shewry P.R. and Barcelo P. 1997. Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nature Biotechnol. 15: 1295–1299.

    Google Scholar 

  • Bartling D., Radzio R., Steiner U. and Weiler E.W. 1993. A glutathione S-transferase with glutathione peroxidase activity from Arabidopsis thaliana: molecular cloning and functional characterization. Eur. J. Biochem. 216: 579–586.

    Google Scholar 

  • Becker D., Brettschneider R. and Lörz H. 1994. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J. 5: 299–307.

    Google Scholar 

  • Berhane K., Widersten M., Engstrom A., Kozarich J. and Mannervik B. 1994. Detoxification of base propenals and other a,b-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione S-transferases. Proc. Natl. Acad. Sci. USA 91: 1480–1484.

    Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72: 248–254.

    Google Scholar 

  • Christensen A.H., Sharrock R.A. and Quail P.H. 1992. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript silencing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18: 675–689.

    Google Scholar 

  • Cole D.J. 1994. Detoxification and activation of agrochemicals in plants. Pestic. Sci. 42: 209–222.

    Google Scholar 

  • Couderchet M., Schmalfuß J. and Böger P. 1998. A specific and sensitive assay to quantify the herbicidal activity of chloroacetamides. Pestic. Sci. 52: 381–387.

    Google Scholar 

  • Cummins I., Cole D.J. and Edwards R. 1997. Purification of multiple glutathione transferases involved in herbicide detoxification from wheat (Triticum aestivum L.) treated with the safener fenchlorazole-ethyl. Pestic. Biochem. Physiol. 59: 35–49.

    Google Scholar 

  • Daniel V. 1993. Glutathione S-transferases: gene structure and regulation of expression. CRC Crit. Rev. Biochem. Mol. Biol. 28: 173–207.

    Google Scholar 

  • De Block M., De Sonville A. and Debrouwer D. 1995. The selection mechanism of phosphinothricin is influenced by the metabolic status of the tissue. Planta 197: 619–626.

    Google Scholar 

  • Dixon D., Cole D.J. and Edwards R. 1997. Characterisation of multiple glutathione transferases containing the GST I subunit with activities toward herbicide substrates in maize (Zea mays). Pestic. Sci. 50: 72–82.

    Google Scholar 

  • Dixon D.P., Cole D.J. and Edwards R. 1998. Purification, regulation and cloning of a glutathione transferase (GST) from maize resembling the auxin-inducible type-III GSTs. Plant Mol. Biol. 36: 75–87.

    Google Scholar 

  • Dixon D.P., Cole D.J. and Edwards R. 1999. Dimerisation of maize glutathione transferases in recombinant bacteria. Plant Mol. Biol. 40: 997–1008.

    Google Scholar 

  • Droog F. 1997. Plant glutathione S-transferases, a tale of theta and tau. J. Plant Growth Regul. 16: 95–107.

    Google Scholar 

  • Frear D.S. and Swanson H.R. 1970. Biosynthesis of S-(4-ethylamino-6-isopropylamino-2-s-triazino) glutathione: partial purification and properties of a glutathione S-transferase from corn. Phytochemistry 9: 2123–2132.

    Google Scholar 

  • Fuerst E.P. 1987. Understanding the mode of action of the chloroacetamide and thiocarbamate herbicides. Weed Technol. 1: 270–277.

    Google Scholar 

  • He G.Y., Rooke L., Steele S., Békés F., Gras P., Tatham A.S., Fido R., Barcelo P., Shewry P.R. and Lazzeri P.A. 1999. Transformation of pasta wheat (Triticum turgidum L. var. durum) with high-molecular-weight glutenin subunit genes and modification of dough functionality. Mol. Breed. 5: 377–386.

    Google Scholar 

  • Holt D.C., Lay V.J., Clarke E.D., Dinsmore A., Jepson I., Bright S.W.J. and Greenland A.J. 1995. Characterization of the safenerinduced glutathione S-transferase isoform II from maize. Planta 196: 295–302.

    Google Scholar 

  • Irzyk G.P. and Fuerst E.P. 1993. Purification and characterization of a glutathione S-transferase from benoxacor-treated maize (Zea mays). Plant Physiol. 102: 803–810.

    Google Scholar 

  • Jablonkai I. and Hatzios K.K. 1991. Role of glutathione and glutathione S-transferase in the selectivity of acetochlor in maize and wheat. Pestic. Biochem. Physiol. 41: 221–231.

    Google Scholar 

  • Jepson I., Lay V.J., Holt D.C., Bright S.W.J. and Greenland A.J. 1994. Cloning and characterization of maize herbicide safenerinduced cDNAs encoding subunits of glutathione S-transferase isoforms I, II and IV. Plant Mol. Biol. 26: 1855–1866.

    Google Scholar 

  • Jepson I., Holt D.C., Roussel V., Wright S.Y. and Greenland A.J. 1997. Transgenic plant analysis as a tool for the study of maize glutathione S-transferases. In: Hatzios K.K. (ed.), Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 313–323.

    Google Scholar 

  • Marrs K.A. 1996. The functions and regulation of glutathione Stransferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 127–158.

    Google Scholar 

  • Mozer T.J., Tiemeier D.C. and Jaworski E.G. 1983. Purification and characterization of corn glutathione S-transferase. Biochemistry 22: 1068–1072.

    Google Scholar 

  • Murashige T. and Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Google Scholar 

  • Nehra N.S., Chibbar R.N., Leung N., Caswell K., Mallard C., Steinhauer L., Baga M. and Kartha K.K. 1994. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 5: 285–297.

    Google Scholar 

  • Ortiz J.P.A., Reggiardo M.I., Ravizzini R.A., Altabe S.G., Cervigni G.D.L., Spitteler M.A., Morata M.M., Elías F.E. and Vallejos R.H. 1996. Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Rep. 15: 877–881.

    Google Scholar 

  • Pascal S., Debrauwer L., Ferte M.P., Anglade P., Rouimi P. and Scalla R. 1998. Analysis and characterization of glutathione Stransferase subunits from wheat (Triticum aestivum L.). Plant Sci. 134: 217–226.

    Google Scholar 

  • Prade L., Huber R. and Bieseler B. 1998. Structures of herbicides in complex with their detoxifying enzyme glutathione S-transferase: explanations for the selectivity of the enzyme in plants. Structure 6: 1445–1452.

    Google Scholar 

  • Rasco-Gaunt S. and Barcelo P. 1999. Immature inflorescence culture of cereals. In: Hall R.D. (ed.), Methods in Molecular Biology, Vol. 111: Plant Cell Culture Protocols. Humana Press, Totowa, NJ, pp. 71–81.

    Google Scholar 

  • Rasco-Gaunt S., Riley A., Lazzeri P. and Barcelo P. 1999. A facile method for screening for phosphinothricin (PPT)-resistant transgenic wheats. Mol. Breed. 5: 255–262.

    Google Scholar 

  • Riechers D.E., Yang K., Irzyk G.P., Jones S.S. and Fuerst E.P. 1996. Variability of glutathione S-transferase levels and dimethenamid tolerance in safener-treated wheat and wheat relatives. Pestic. Biochem. Physiol. 56: 88–101.

    Google Scholar 

  • Roxas V.P., Smith R.K., Allen E.R. and Allen R.D. 1997. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnol. 15: 988–991.

    Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Sari-Gorla M., Ferrario S., Rossini L., Frova C. and Villa M. 1993. Developmental expression of glutathione-S-transferase in maize and its possible connection with herbicide tolerance. Euphytica 67: 221–230.

    Google Scholar 

  • Sommer A. and Böger P. 1999. Characterization of recombinant corn glutathione S-transferase isoforms I, II, III, and IV. Pestic. Biochem. Physiol. 63: 127–138.

    Google Scholar 

  • Stacey J. and Isaac P.G. 1994. Isolation of DNA from plants. In: Isaac P.G. (ed.), Methods in Molecular Biology, Vol. 28: Protocols for Nucleic Acid Analysis by Nonradioactive Probes. Humana Press, Totowa, NJ, pp. 9–15.

    Google Scholar 

  • Stoger E., Williams S., Keen D. and Christou P. 1998. Molecular characteristics of transgenic wheat and the effect on transgene expression. Transgen. Res. 7: 463–471. 315

    Google Scholar 

  • Stoger E., Williams S., Keen D. and Christou P. 1999. Constitutive versus seed specific expression in transgenic wheat: temporal and spatial control. Transgen. Res. 8: 73–82.

    Google Scholar 

  • Struhl K., Cameron J.R. and Davis R.W. 1976. Functional genetic expression of eukaryotic DNA in Escherichia coli. Proc. Natl. Acad. Sci. USA 73: 1471–1475.

    Google Scholar 

  • Timmerman K.P. 1989. Molecular characterization of corn glutathione S-transferase isozymes involved in herbicide detoxication. Physiol. Plant. 77: 465–471.

    Google Scholar 

  • Vasil V., Srivastava V., Castillo A.M., Fromm M.E. and Vasil I.K. 1993. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/technology 11: 1553–1558.

    Google Scholar 

  • Weeks J.T., Anderson O.D. and Blechl A.E. 1993. Rapid production of multiple independent lines of fertile transgenic wheat. Plant Physiol. 102: 1077–1084.

    Google Scholar 

  • Wiegand R.C., Shah D.M., Mozer T.J., Harding E.I., Diazcollier J., Saunders C., Jaworski E.G. and Tiemeier D.C. 1986. Messenger RNA encoding a glutathione-S-transferase responsible for herbicide tolerance in maize is induced in response to safener treatment. Plant Mol. Biol. 7: 235–243.

    Google Scholar 

  • Wilce M.C.J. and Parker M.W. 1994. Structure and function of glutathione S-transferases. Biochim. Biophys. Acta 1205: 1–18.

    Google Scholar 

  • Witrzens B., Brettell R.I.S., Murray F.R., McElroy D., Li Z. and Dennis E.S. 1998. Comparison of three selectable marker genes for transformation of wheat by microprojectile bombardment. Aust. J. Plant Physiol. 25: 39–44.

    Google Scholar 

  • Wohlleben W., Arnold W., Broer I., Hillermann D., Strauch E. and Pühler A. 1988. Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces Tü494 and its expression in Nicotiania tabacum. Gene 70: 25–37.

    Google Scholar 

  • Zhou H., Arrowsmith J.W., Fromm M.E., Hironaka C.M., Taylor M.L., Rodriguez D., Pajeu M.E., Brown S.M., Santino C.G. and Fry J.E. 1995. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep. 15: 159–163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milligan, A., Daly, A., Parry, M. et al. The expression of a maize glutathione S-transferase gene in transgenic wheat confers herbicide tolerance, both in planta and in vitro. Molecular Breeding 7, 301–315 (2001). https://doi.org/10.1023/A:1011652821765

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011652821765

Navigation