Skip to main content
Log in

Operator splitting methods for degenerate convection–diffusion equations II: numerical examples with emphasis on reservoir simulation and sedimentation

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present an accurate numerical method for a large class of scalar, strongly degenerate convection–diffusion equations. Important subclasses are hyperbolic conservation laws, porous medium type equations, two-phase reservoir flow equations, and strongly degenerate equations coming from the recent theory of sedimentation–consolidation processes. The method is based on splitting the convective and the diffusive terms. The nonlinear, convective part is solved using front tracking and dimensional splitting, while the nonlinear diffusion part is solved by an implicit–explicit finite difference scheme. In addition, one version of the implemented operator splitting method has a mechanism built in for detecting and correcting unphysical entropy loss, which may occur when the time step is large. This mechanism helps us gain a large time step ability for practical computations. A detailed convergence analysis of the operator splitting method was given in Part I. Here we present numerical experiments with the method for examples modelling secondary oil recovery and sedimentation–consolidation processes. We demonstrate that the splitting method resolves sharp gradients accurately, may use large time steps, has first order convergence, exhibits small grid orientation effects, has small mass balance errors, and is rather efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Afif and B. Amaziane, On convergence of finite volume schemes for one-dimensional two-phase flow in porous media, IMA J. Numer. Anal., submitted.

  2. M. Afif and B. Amaziane, Convergence of finite volume schemes for a degenerate convection-diffusion equation arising in two-phase flow in porous media, preprint (1999).

  3. M. Afif and B. Amaziane, Analysis of finite volume schemes for two-phase flow in porous media on unstructured grids, in: Finite Volumes for Complex Applications II-Problems and Perspectives, Proc. of Second International Symposium, Duisburg, Germany, 1999, eds. R. Vilsmeier et al. (1999) pp. 387-394.

  4. K. Aziz and A. Settari, Petroleum Reservoir Simulation (Elsevier Applied Science, Essex, UK, 1979).

    Google Scholar 

  5. F. Bouchut, F.R. Guarguaglini and R. Natalini, Diffusive BGK approximations for nonlinear multidimensional parabolic equations, preprint (1999).

  6. R. Bürger, S. Evje, K.H. Karlsen and K.-A. Lie, Numerical methods for the simulation of the settling of flocculated suspensions, Chem. Engrg. J., to appear.

  7. R. Bürger, S. Evje and K.H. Karlsen, On strongly degenerate convection-diffusion problems modeling sedimentation-consolidation processes, J. Math. Anal. Appl. 247(2) (2000) 517–556.

    Google Scholar 

  8. R. Bürger and W.L. Wendland, Existence, uniqueness, and stability of generalized solutions of an initial-boundary value problem for a degenerating quasilinear parabolic equation, J. Math. Anal. Appl. 218(1) (1998) 207–239.

    Google Scholar 

  9. M.C. Bustos, F. Concha, R. Bürger and E.M. Tory, Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory (Kluwer Academic, Dordrecht, The Netherlands, 1999).

    Google Scholar 

  10. G. Chavent and J. Jaffre, Mathematical Models and Finite Elements for Reservoir Simulation, Studies in Mathematics and Its Applications, Vol. 17 (North-Holland, Amsterdam, 1986).

    Google Scholar 

  11. M.G. Crandall and A. Majda, The method of fractional steps for conservation laws, Numer. Math. 34 (1980) 285–314.

    Google Scholar 

  12. H.K. Dahle, M.S. Espedal and R.E. Ewing, Characteristic Petrov-Galerkin subdomain methods for convection-diffusion problems, in: Numerical Simulation in Oil Recovery, Minneapolis, MN, 1986 (Springer, New York, 1988) pp. 77–87.

    Google Scholar 

  13. H.K. Dahle, M.S. Espedal, R.E. Ewing and O. Sævareid, Characteristic adaptive subdomain methods for reservoir flow problems, Numer. Methods Partial Differential Equations 6(4) (1990) 279–309.

    Google Scholar 

  14. H.K. Dahle, M.S. Espedal and O. Sævareid, Characteristic, local grid refinement techniques for reservoir flow problems, Internat. J. Numer. Methods Engrg. 34 (1992) 1051–1069.

    Google Scholar 

  15. H.K. Dahle, R.E. Ewing and T.F. Russell, Eulerian-Lagrangian localized adjoint methods for a nonlinear advection-diffusion equation, Comput. Methods Appl. Mech. Engrg. 122(3-4) (1995) 223–250.

    Google Scholar 

  16. C.N. Dawson, Godunov-mixed methods for advection-diffusion equations in multidimensions, SIAM J. Numer. Anal. 30(5) (1993) 1315–1332.

    Google Scholar 

  17. C.N. Dawson, High resolution upwind-mixed finite element methods for advection-diffusion equations with variable time-stepping, Numer. Methods Partial Differential Equations 11(5) (1995) 525–538.

    Google Scholar 

  18. C.N. Dawson, Godunov-mixed methods for advective flow problems in one space dimension, SIAM J. Numer. Anal. 28(5) (1991) 1282–1309.

    Google Scholar 

  19. C.N. Dawson and M.F. Wheeler, Time-splitting methods for advection-diffusion-reaction equations arising in contaminant transport, in: ICIAM 91, Washington, DC, 1991 (SIAM, Philadelphia, PA, 1992) pp. 71–82.

    Google Scholar 

  20. M.S. Espedal and R.E. Ewing, Characteristic Petrov-Galerkin subdomain methods for two-phase immiscible flow, Comput. Methods Appl. Mech. Engrg. 64 (1987) pp. 113–135.

    Google Scholar 

  21. M.S. Espedal and K.H. Karlsen, Numerical solution of reservoir flow models based on large time step operator splitting algorithms, in: Filtration in Porous Media and Industrial Applications, eds. A. Fasano and H. van Duijn, Lecture Notes in Mathematics (Springer, Berlin, to appear).

  22. S. Evje and K.H. Karlsen, Discrete approximations of BV solutions to doubly nonlinear degenerate parabolic equations, Numer. Math. 86(3) (2000) 377–417.

    Google Scholar 

  23. S. Evje and K.H. Karlsen, Monotone difference approximations of BV solutions to degenerate convection-diffusion equations, SIAM J. Numer. Anal. 37(6) (2000) 1838–1860 (electronic).

    Google Scholar 

  24. S. Evje and K.H. Karlsen, Degenerate convection-diffusion equations and implicit monotone difference schemes, in: Hyperbolic Problems: Theory, Numerics, Applications, eds. M. Fey and R. Jeltsch, International Series of Numerical Mathematics, Vol. 129 (Birkhäuser, Basel, 1999) pp. 285–294.

    Google Scholar 

  25. S. Evje and K.H. Karlsen, Second order difference schemes for degenerate convection-diffusion equations, in preparation.

  26. S. Evje and K.H. Karlsen, Viscous splitting approximation of mixed hyperbolic-parabolic convection-diffusion equations, Numer. Math. 83(1) (1999) 107–137.

    Google Scholar 

  27. S. Evje, K.H. Karlsen, K.-A. Lie and N.H. Risebro, Front tracking and operator splitting for nonlinear degenerate convection-diffusion equations, in: Parallel Solution of Partial Differential Equations, eds. P. BjØrstad and M. Luskin, IMA Volumes in Mathematics and Its Applications, Vol. 120 (Springer, Berlin, 2000) pp. 209–228.

    Google Scholar 

  28. V. Haugse, K.H. Karlsen, K.-A. Lie and J.R. Natvig, Numerical solution of the polymer system by front tracking, Transport in Porous Media, to appear.

  29. H. Holden and L. Holden, On scalar conservation laws in one-dimension, in: Ideas and Methods in Mathematics and Physics, eds. S. Albeverio, J.E. Fenstad, H. Holden and T. LindstrØm (Cambridge University Press, Cambridge, 1988) pp. 480–509.

    Google Scholar 

  30. H. Holden and N.H. Risebro, A method of fractional steps for scalar conservation laws without the CFL condition, Math. Comp. 60(201) (1993) 221–232.

    Google Scholar 

  31. H. Holden, K.H. Karlsen and K.-A. Lie, Operator splitting methods for degenerate convection-diffusion equations I: convergence and entropy estimates, in: Stochastic Processes, Physics and Geometry: New Interplays. II A Volume in Honor of Sergio Albeverio, eds. F. Gesztesy, H. Holden, J. Jost, S. Paycha, M. Röckner, S. Scarlatti (Amer. Math. Soc., Providence, RI, 2000) pp. 293–316.

    Google Scholar 

  32. K.H. Karlsen, K. Brusdal, H.K. Dahle, S. Evje and K.-A. Lie, The corrected operator splitting approach applied to a nonlinear advection-diffusion problem, Comput. Methods Appl. Mech. Engrg. 167(3-4) (1998) 239–260.

    Google Scholar 

  33. K.H. Karlsen and K.-A. Lie, An unconditionally stable splitting for a class of nonlinear parabolic equations, IMA J. Num. Anal. 19 (1999) 609–635.

    Google Scholar 

  34. K.H. Karlsen, K.-A. Lie, N.H. Risebro and J. FrØyen, A front-tracking approach to a two-phase fluid-flow model with capillary forces, In Situ (Special Issue on Reservoir Simulation) 22(1) (1998) 59–89.

    Google Scholar 

  35. K.H. Karlsen and N.H. Risebro, Corrected operator splitting for nonlinear parabolic equations, SIAM J. Numer. Anal. 37(3) (2000) 980–1003 (electronic).

    Google Scholar 

  36. K.H. Karlsen and N.H. Risebro, An operator splitting method for convection-diffusion equations, Numer. Math. 77(3) (1997) 365–382.

    Google Scholar 

  37. A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys. 160 (2000) 241–282.

    Google Scholar 

  38. K.-A. Lie, A dimensional splitting method for nonlinear equations with variable coefficients, BIT 39(4) (1999) 683–700.

    Google Scholar 

  39. K.-A. Lie, Front tracking for one-dimensional quasilinear hyperbolic equations with variable coefficients, Numerical Algorithms 24(3) (2000) 275–298.

    Google Scholar 

  40. K.-A. Lie, V. Haugse and K.H. Karlsen, Dimensional splitting with front tracking and adaptive grid refinement, Numer. Methods for Partial Differential Equations 14(5) (1998) 627–648.

    Google Scholar 

  41. C.M. Marle, Multiphase Flow in Porous Media, Institut Francais du Petrole Publications (Editions Technip, 1981).

  42. N.H. Risebro and A. Tveito, Front tracking applied to a nonstrictly hyperbolic system of conservation laws, SIAM J. Sci. Statist. Comput. 12(6) (1991) 1401–1419.

    Google Scholar 

  43. A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov and A.P.Mikhailov, Blow-up in Quasilinear Parabolic Equations (Walter de Gruyter, Berlin, 1995). Translated from the 1987 Russian original by M. Grinfeld and revised by the authors.

    Google Scholar 

  44. M.F. Wheeler, W.A. Kinton and C.N. Dawson, Time-splitting for advection-dominated parabolic problems in one space variable, Comm. Appl. Numer. Methods 4(3) (1988) 413–423.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holden, H., Karlsen, K.H. & Lie, KA. Operator splitting methods for degenerate convection–diffusion equations II: numerical examples with emphasis on reservoir simulation and sedimentation. Computational Geosciences 4, 287–322 (2000). https://doi.org/10.1023/A:1011582819188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011582819188

Navigation