Skip to main content
Log in

The role of apoptosis in regulating hematopoietic stem cell numbers

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The importance of apoptosis, in combination with proliferation, in maintaining stable populations has become increasingly clear in the last decade. Perturbation of either of these processes can have serious consequences, and result in a variety of disorders. Moreover, as the players and pathways gradually emerge, it turns out that there are strong connections in the regulation of cell cycle progression and apoptosis. Apoptosis, proliferation, and the disorders resulting from aberrant regulation have been studied in a variety of cell types and systems. Hematopoietic stem cells (HSC) are defined as primitive mesenchymal cells that are capable of both self-renewal and differentiation into the various cell lineages that constitute the functioning hematopoietic system. Many (but certainly not all) mature hematopoietic cells are relatively short-lived, sometimes with a half-life in the order of days. Homeostasis requires the production of 108 (mouse) to 1011 (human) cells each day. All of these cells are ultimately derived from HSC that mostly reside in the bone marrow in adult mammals. The study of the regulation of HSC numbers has focussed mainly on the choice between self-renewal and differentiation, symmetric and asymmetric cell divisions. Recently, however, it has been directly demonstrated that apoptosis plays an important role in the regulation of hematopoietic stem cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Till J, McCulloch E. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 213-224.

    Google Scholar 

  2. Visser JW, Bauman JG, Mulder AH, Eliason JF, de Leeuw AM. Isolation of murine pluripotent hemopoietic stem cells. J Exp Med 1984;159: 1576-1590.

    Google Scholar 

  3. Dexter TM, Spooncer E. Growth and differentiation in the hemopoietic system. Annu Rev Cell Biol 1987;3: 423-441.

    Google Scholar 

  4. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science 1988;241: 58-62.

    Google Scholar 

  5. Yoder MC, Hiatt K, Dutt P, Mukherjee P, Bodine DM, Orlic D. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 1997;7: 335-344.

    Google Scholar 

  6. Domen J, Weissman IL. Self-renewal, differentiation or death: Regulation and manipulation of hematopoietic stem cell fate. Mol Med Today 1999;5: 201-208.

    Google Scholar 

  7. Tavian M, Hallais MF, Peault B. Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development 1999;126: 793-803.

    Google Scholar 

  8. Akashi K, Kondo M, Cheshier S, et al. Lymphoid development from stem cells and the common lymphocyte progenitors. Cold Spring Harbor Symp Quant Biol 1999;64: 1-12.

    Google Scholar 

  9. Weissman IL. Stem cells: Units of development, units of regeneration, and units in evolution. Cell 2000;100: 157-168.

    Google Scholar 

  10. Cumano A, Dieterlen-Lievre F, Godin I. The splanchnopleura/ AGM region is the prime site for the generation of multipotent hemopoietic precursors, in the mouse embryo. Vaccine 2000;18: 1621-1623.

    Google Scholar 

  11. de Bruijn MF, Speck NA, Peeters MC, Dzierzak E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 2000;19: 2465-2474.

    Google Scholar 

  12. Lemischka IR. Clonal, in vivo behavior of the totipotent hematopoietic stem cell. Semin Immunol 1991;3: 349-355.

    Google Scholar 

  13. Cheshier SH, Morrison SJ, Liao X, Weissman IL. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 1999;96: 3120-3125.

    Google Scholar 

  14. Wagemaker G. In vitro and in vivo expansion of stem cell populations. Vox Sang 1998;74: 463-466.

    Google Scholar 

  15. von Kalle C, Glimm H, Schulz G, Mertelsmann R, Henschler R. New developments in hematopoietic stem cell expansion. Curr Opin Hematol 1998;5: 79-86.

    Google Scholar 

  16. Audet J, Zandstra PW, Eaves CJ, Piret JM. Advances in hematopoietic stem cell culture. Curr Opin Biotechnol 1998;9: 146-151.

    Google Scholar 

  17. Aglietta M, Bertolini F, Carlo-Stella C, et al. Ex vivo expansion of hematopoietic cells and their clinical use. Haematologica 1998;83: 824-848.

    Google Scholar 

  18. Srour EF, Abonour R, Cornetta K, Traycoff CM. Ex vivo expansion of hematopoietic stem and progenitor cells: Are we there yet? J Hematother 1999;8: 93-102.

    Google Scholar 

  19. Bradford GB, Williams B, Rossi R, Bertoncello I. Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol 1997;25: 445-453.

    Google Scholar 

  20. Domen J, Cheshier SH, Weissman IL. The role of apoptosis in the regulation of hematopoietic stem cellsOverexpression of Bcl-2 increases both their number and repopulation potential. J Exp Med 2000;191: 253-264.

    Google Scholar 

  21. Prockop DJ. Marrow stromal cells as stem cells for non-hematopoietic tissues. Science 1997;276: 71-74.

    Google Scholar 

  22. Fuchs E, Segre JA. Stem cells: A new lease on life. Cell 2000;100: 143-155.

    Google Scholar 

  23. Weissman IL. Translating stem and progenitor cell biology to the clinic: Barriers and opportunities. Science 2000;287: 1442-1446.

    Google Scholar 

  24. Gage FH. Mammalian neural stem cells. Science 2000;287: 1433-1438.

    Google Scholar 

  25. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998;279: 1528-1530.

    Google Scholar 

  26. Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 1997;94: 4080-4085.

    Google Scholar 

  27. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc Natl Acad Sci USA 1998;95: 3908-3913.

    Google Scholar 

  28. Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells. Science 1999;284: 1168-1170.

    Google Scholar 

  29. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999;283: 534-537.

    Google Scholar 

  30. Jackson KA, Mi T, Goodell MA. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA 1999;96: 14482-14486.

    Google Scholar 

  31. Clarke DL, Johansson CB, Wilbertz J, et al. Generalized potential of adult neural stem cells. Science 2000;288: 1660-1663.

    Google Scholar 

  32. Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 2000;6: 1229-1234.

    Google Scholar 

  33. Spangrude GJ, Johnson GR. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci USA 1990;87: 7433-7437.

    Google Scholar 

  34. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996;183: 1797-1803.

    Google Scholar 

  35. Storms RW, Trujillo AP, Springer JB, et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 1999;96: 9118-9123.

    Google Scholar 

  36. Uchida N, Weissman IL. Searching for hematopoietic stem cells: Evidence that Thy-1.1lo Lin-Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J Exp Med 1992;175: 175-184.

    Google Scholar 

  37. Ikuta K, Weissman IL. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci USA 1992;89: 1502-1506.

    Google Scholar 

  38. Wiesmann A, Phillips RL, Mojica M, et al. Expression of CD27 on murine hematopoietic stem and progenitor cells. Immunity 2000;12: 193-199.

    Google Scholar 

  39. Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996;273: 242-245.

    Google Scholar 

  40. Randall TD, Lund FE, Howard MC, Weissman IL. Expression of murine CD38 defines a population of long-term reconstituting hematopoietic stem cells. Blood 1996;87: 4057-4067.

    Google Scholar 

  41. Moore T, Huang S, Terstappen LW, Bennett M, Kumar V. Expression of CD43 on murine and human pluripotent hematopoietic stem cells. J Immunol 1994;153: 4978-4987.

    Google Scholar 

  42. Petrenko O, Beavis A, Klaine M, Kittappa R, Godin I, Lemischka IR. The molecular characterization of the fetal stem cell marker AA4. Immunity 1999;10: 691-700.

    Google Scholar 

  43. Bauman JG, de Vries P, Pronk B, Visser JW. Purification of murine hemopoietic stem cells and committed progenitors by fluorescence activated cell sorting using wheat germ agglutinin and monoclonal antibodies. Acta Histochem Suppl 1988;36: 241-253.

    Google Scholar 

  44. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1994;1: 661-673.

    Google Scholar 

  45. Kim M, Cooper DD, Hayes SF, Spangrude GJ. Rhodamine-123 staining in hematopoietic stem cells of young mice indicates mitochondrial activation rather than dye efflux. Blood 1998;91: 4106-4117.

    Google Scholar 

  46. Spangrude GJ, Brooks DM. Phenotypic analysis of mouse hematopoietic stem cells shows a Thy-1-negative subset. Blood 1992;80: 1957-1964.

    Google Scholar 

  47. Spangrude GJ, Brooks DM. Mouse strain variability in the expression of the hematopoietic stem cell antigen Ly-6A/E by bone marrow cells. Blood 1993;82: 3327-3332.

    Google Scholar 

  48. Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL. The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci USA 1995;92: 10302-10306.

    Google Scholar 

  49. Randall TD, Weissman IL. Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. Blood 1997;89: 3596-3606.

    Google Scholar 

  50. Sato T, Laver JH, Ogawa M. Reversible Expression of CD34 by Murine Hematopoietic Stem Cells. Blood 1999;94: 2548-2554.

    Google Scholar 

  51. Spangrude GJ, Brooks DM, Tumas DB. Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 1995;85: 1006-1016.

    Google Scholar 

  52. Zijlmans JM, Visser JW, Kleiverda K, Kluin PM, Willemze R, Fibbe WE. Modification of rhodamine staining allows identification of hematopoietic stem cells with preferential short-term or long-term bone marrow-repopulating ability. Proc Natl Acad Sci USA 1995;92: 8901-8905.

    Google Scholar 

  53. Morrison SJ, Wandycz AM, Hemmati HD, Wright DE, Weissman IL. Identification of a lineage of multipotent hematopoietic progenitors. Development 1997;124: 1929-1939.

    Google Scholar 

  54. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997;91: 661-672.

    Google Scholar 

  55. Galy A, Travis M, Cen D, Chen B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 1995;3: 459-473.

    Google Scholar 

  56. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000;404: 193-197.

    Google Scholar 

  57. Muller-Sieburg CE, Riblet R. Genetic control of the frequency of hematopoietic stem cells in mice: Mapping of a candidate locus to chromosome 1. J Exp Med 1996;183: 1141-1150.

    Google Scholar 

  58. de Haan G, Van Zant G. Intrinsic and extrinsic control of hemopoietic stem cell numbers: Mapping of a stem cell gene. J Exp Med 1997;186: 529-536.

    Google Scholar 

  59. Gordon MY, Blackett NM. Reconstruction of the hematopoietic system after stem cell transplantation. Cell Transplant 1998;7: 339-344.

    Google Scholar 

  60. Lemischka IR, Raulet DH, Mulligan RC. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 1986;45: 917-927.

    Google Scholar 

  61. Necas E, Sefc L, Sulc K, Barthel E, Seidel HJ. Estimation of extent of cell death in different stages of normal murine hematopoiesis. Stem Cells 1998;16: 107-111.

    Google Scholar 

  62. Domen J, Gandy KL, Weissman IL. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood 1998;91: 2272-2282.

    Google Scholar 

  63. Richman CM, Weiner RS, Yankee RA. Increase in circulating stem cells following chemotherapy in man. Blood 1976;47: 1031-1039.

    Google Scholar 

  64. Appelbaum FR, Deeg HJ, Storb R, Graham TC, Charrier K, Bensinger W. Cure of malignant lymphoma in dogs with peripheral blood stem cell transplantation.Transplantation 1986;42: 19-22.

    Google Scholar 

  65. Abrams RA, McCormack K, Bowles C, Deisseroth AB. Cyclophosphamide treatment expands the circulating hematopoietic stem cell pool in dogs. J Clin Invest 1981;67: 1392-1399.

    Google Scholar 

  66. Siena S, Bregni M, Brando B, Ravagnani F, Bonadonna G, Gianni AM. Circulation of CD34+ hematopoietic stem cells in the peripheral blood of high-dose cyclophosphamide-treated patients: Enhancement by intravenous recombinant human granulocyte-macrophage colony-stimulating factor. Blood 1989;74: 1905-1914.

    Google Scholar 

  67. Molineux G, Pojda Z, Hampson IN, Lord BI, Dexter TM. Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. Blood 1990;76: 2153-2158.

    Google Scholar 

  68. Zander AR, Lyding J, Bielack S. Transplantation with blood stem cells. Blood Cells 1991;17: 301-309.

    Google Scholar 

  69. Demirer T, Buckner CD, Bensinger WI. Optimization of peripheral blood stem cell mobilization. Stem Cells 1996;14: 106-116.

    Google Scholar 

  70. Repka T, Weisdorf D. Peripheral blood versus bone marrow for hematopoietic cell transplantation. Curr Opin Oncol 1998;10: 112-117.

    Google Scholar 

  71. Laterveer L, Lindley IJ, Hamilton MS, Willemze R, Fibbe WE. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood 1995;85: 2269-2275.

    Google Scholar 

  72. Morrison SJ, Wright DE, Weissman IL. Cyclophosphamide/ granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc Natl Acad Sci USA 1997;94: 1908-1913.

    Google Scholar 

  73. Ogilvy S, Metcalf D, Print CG, Bath ML, Harris AW, Adams JM. Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc Natl Acad SciUSA 1999;96: 14943-14948.

    Google Scholar 

  74. Fairbairn LJ, Cowling GJ, Reipert BM, Dexter TM. Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell 1993;74: 823-832.

    Google Scholar 

  75. Aguila HL, Weissman IL. Hematopoietic stem cells are not direct cytotoxic targets of natural killer cells. Blood 1996;87: 1225-1231.

    Google Scholar 

  76. Martin PJ, Hansen JA, Buckner CD, et al. Effects of in vitro depletion of T cells in HLA-identical allogeneic marrow grafts. Blood 1985;66: 664-672.

    Google Scholar 

  77. Gandy KL, Weissman IL. Tolerance of allogeneic heart grafts in mice simultaneously reconstituted with purified allogeneic hematopoietic stem cells. Transplantation 1998;65: 295-304.

    Google Scholar 

  78. Neipp M, Zorina T, Domenick MA, Exner BG, Ildstad ST. Effect of FLT3 ligand and granulocyte colony-stimulating factor on expansion and mobilization of facilitating cells and hematopoietic stem cells in mice: Kinetics and repopulating potential. Blood 1998;92: 3177-3188.

    Google Scholar 

  79. Martin PJ. Winning the battle of graft versus host. Nat Med 2000;6: 18-19.

    Google Scholar 

  80. Gandy KL, Domen J, Aguila H, Weissman IL. CD8+TCR+ and CD8+TCR-cells in whole bone marrow facilitate the engraftment of hematopoietic stem cells across allogeneic barriers. Immunity 1999;11: 579-590.

    Google Scholar 

  81. Shizuru JA, Jerabek L, Edwards CT, Weissman IL. Transplantation of purified hematopoietic stem cells: Requirements for overcoming the barriers of allogeneic engraftment. Biol Blood Marrow Transplant 1996;2: 3-14.

    Google Scholar 

  82. Wang B, El-Badri NS, Cherry, Good RA. Purified hematopoietic stem cells without facilitating cells can repopulate fully allogeneic recipients across entire major histocompatibility complex transplantation barrier in mice. Proc Natl Acad Sci USA 1997;94: 14632-14636.

    Google Scholar 

  83. Domen J, Weissman IL. Hematopoietic stem cells need two signals to prevent apoptosis;BCL-2 can provide one of these, Kitl/c-Kit signaling the other. J Exp Med 2000, 192;1707-1718.

    Google Scholar 

  84. Down JD, Boudewijn A, van Os R, Thames HD, Ploemacher RE. Variations in radiation sensitivity and repair among different hematopoietic stem cell subsets following fractionated irradiation. Blood 1995;86: 122-127.

    Google Scholar 

  85. McCarthy KF. Population size and radiosensitivity of murine hematopoietic endogenous long-term repopulating cells. Blood 1997;89: 834-841.

    Google Scholar 

  86. Strober S, Weissman IL. Immunosuppressive and tolerogenic effects of whole-body, total lymphoid, and regional irradiation. In: Salaman JR, ed. The current status of modern therapy. Vol. 7. Lancaster, England: MTP Press, 1981: 19-53.

    Google Scholar 

  87. Shank B. Radiotherapeutic principles of bone marrow transplantation. In: Forman SJ, Blume KG, Thomas ED, eds. Bone marrow transplantation. Boston: Blackwell Scientific Publications, 1994: 96-113.

    Google Scholar 

  88. Reed JC. Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol 1997;34: 9-19.

    Google Scholar 

  89. Hannun YA. Apoptosis and the dilemma of cancer chemotherapy. Blood 1997;89: 1845-1853.

    Google Scholar 

  90. Mesner PW, Jr., Budihardjo, II, Kaufmann SH. Chemotherapy-induced apoptosis. Adv Pharmacol1997;41:461-499.

    Google Scholar 

  91. Szilvassy SJ, Cory S. Phenotypic and functional characterization of competitive long-term repopulating hematopoietic stem cells enriched from 5-fluorouracil-treated murine marrow. Blood 1993;81: 2310-2320.

    Google Scholar 

  92. Hortobagyi GN, Buzdar AU, Theriault RL, et al. Randomized trial of high-dose chemotherapy and blood cell autografts for high-risk primary breast carcinoma. J Natl Cancer Inst 2000;92: 225-233.

    Google Scholar 

  93. Bashey A, Corringham S, Garrett J, et al. A phase II study of two cycles of high-dose chemotherapy with autologous stem cell support in patients with metastatic breast cancer who meet eligibility criteria for a single cycle. Bone Marrow Transplant 2000;25: 519-524.

    Google Scholar 

  94. Stadtmauer EA, O'Neill A, Goldstein LJ, et al. Conventional-dose chemotherapy compared with high-dose chemotherapy plus autologous hematopoietic stem-cell transplantation for metastatic breast cancer. Philadelphia Bone Marrow Transplant Group. N Engl J Med 2000;342: 1069-1076.

    Google Scholar 

  95. Strasser A, Huang DC, Vaux DL. The role of the bcl-2/ced-9 gene family in cancer and general implications of defects in cell death control for tumourigenesis and resistance to chemotherapy. Biochim Biophys Acta 1997;1333: F151-178.

    Google Scholar 

  96. Raff M. Cell suicide for beginners. Nature 1998;396: 119-122.

    Google Scholar 

  97. Chao DT, Korsmeyer SJ. BCL-2 family: Regulators of cell death. Annu Rev Immunol 1998;16: 395-419.

    Google Scholar 

  98. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281: 1309-1312.

    Google Scholar 

  99. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998;281: 1312-1316.

    Google Scholar 

  100. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998;281: 1322-1326.

    Google Scholar 

  101. Susin SA, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis: Doubt no more. Biochim Biophys Acta 1998;1366: 151-165.

    Google Scholar 

  102. Rathmell JC, Thompson CB. The central effectors of cell death in the immune system. Annu Rev Immunol 1999;17: 781-828.

    Google Scholar 

  103. Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999;11: 255-260.

    Google Scholar 

  104. Lorenzo HK, Susin SA, Penninger J, Kroemer G. Apoptosis inducing factor (AIF): A phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 1999;6: 516-524.

    Google Scholar 

  105. Li H, Yuan J. Deciphering the pathways of life and death. Curr Opin Cell Biol 1999;11: 261-266.

    Google Scholar 

  106. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999;15: 269-290.

    Google Scholar 

  107. Los M, Wesselborg S, Schulze-Osthoff K. The role of caspases in development, immunity, and apoptotic signal transduction: Lessons from knockout mice. Immunity 1999;10: 629-639.

    Google Scholar 

  108. Skulachev VP. Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms. Mol Aspects Med 1999;20: 139-184.

    Google Scholar 

  109. Miller LK. An exegesis of IAPs: Salvation and surprises from BIR motifs. Trends Cell Biol 1999;9: 323-328.

    Google Scholar 

  110. Cross TG, Scheel-Toellner D, Henriquez NV, Deacon E, Salmon M, Lord JM. Serine/threonine protein kinases and apoptosis. Exp Cell Res 2000;256: 34-41.

    Google Scholar 

  111. Antonsson B, Martinou JC. The Bcl-2 protein family. Exp Cell Res 2000;256: 50-57.

    Google Scholar 

  112. Walczak H, Krammer PH. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 2000;256: 58-66.

    Google Scholar 

  113. Zheng TS, Flavell RA. Divinations and surprises: Genetic analysis of caspase function in mice. Exp Cell Res 2000;256: 67-73.

    Google Scholar 

  114. Green DR. Apoptotic pathways: Paper wraps stone blunts scissors. Cell 2000;102: 1-4.

    Google Scholar 

  115. Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis: The role of cytochrome c. Biochim Biophys Acta 1998;1366: 139-149.

    Google Scholar 

  116. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999;397: 441-446.

    Google Scholar 

  117. Hausmann G, O'Reilly LA, van Driel R, et al. Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bcl-x(L). J Cell Biol 2000;149: 623-634.

    Google Scholar 

  118. Cryns V, Yuan J. Proteases to die for. Genes Dev 1998;12: 1551-1570.

    Google Scholar 

  119. Siegel RM, Frederiksen JK, Zacharias DA, et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 2000;288: 2354-2357.

    Google Scholar 

  120. Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 2000;288: 2351-2354.

    Google Scholar 

  121. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998;17: 1675-1687.

    Google Scholar 

  122. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding to and Antagonizing IAP Proteins. Cell 2000;102: 43-54.

    Google Scholar 

  123. Du C, Fang M, Li L, Wang X. Smac, a Mitochondrial Protein that Promotes Cytochrome c-Dependent Caspase Activation by Eliminating IAP Inhibition. Cell 2000;102: 33-42.

    Google Scholar 

  124. Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation. Science 1998;281: 1305-1308.

    Google Scholar 

  125. Barcena A, Park SW, Banapour B, Muench MO, Mechetner E. Expression of Fas/CD95 and Bcl-2 by primitive hematopoietic progenitors freshly isolated from human fetal liver. Blood 1996;88: 2013-2025.

    Google Scholar 

  126. Josefsen D, Myklebust JH, Lynch DH, Stokke T, Blomhoff HK, Smeland EB. Fas ligand promotes cell survival of immature human bone marrow CD34+CD38-hematopoietic progenitor cells by suppressing apoptosis. Exp Hematol 1999;27: 1451-1459.

    Google Scholar 

  127. Sherr CJ, Roberts JM. CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev 1999;13: 1501-1512.

    Google Scholar 

  128. Cheng T, Rodrigues N, Shen H, et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000;287: 1804-1808.

    Google Scholar 

  129. King KL, Cidlowski JA. Cell cycle regulation and apoptosis. Annu Rev Physiol 1998;60: 601-617.

    Google Scholar 

  130. Kasten MM, Giordano A. pRb and the cdks in apoptosis and the cell cycle. Cell Death Differ 1998;5: 132-140.

    Google Scholar 

  131. Guo M, Hay BA. Cell proliferation and apoptosis. Curr Opin Cell Biol 1999;11: 745-752.

    Google Scholar 

  132. O'Connor L, Huang DC, O'Reilly LA, Strasser A. Apoptosis and cell division. Curr Opin Cell Biol 2000;12: 257-263.

    Google Scholar 

  133. Evan G, Littlewood T. A matter of life and cell death. Science 1998;281: 1317-1322.

    Google Scholar 

  134. Oda K, Arakawa H, Tanaka T, et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by ser-46-phosphorylated p53. Cell 2000;102: 849-862.

    Google Scholar 

  135. Mazel S, Burtrum D, Petrie HT. Regulation of cell division cycle progression by bcl-2 expression: A potential mechanism for inhibition of programmed cell death. J Exp Med 1996;183: 2219-2226.

    Google Scholar 

  136. Linette GP, Li Y, Roth K, Korsmeyer SJ. Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation. Proc Natl Acad Sci USA 1996;93: 9545-9552.

    Google Scholar 

  137. O'Reilly LA, Huang DC, Strasser A. The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. Embo J 1996;15: 6979-6990.

    Google Scholar 

  138. Brady HJ, Gil-Gomez G, Kirberg J, Berns AJ. Bax alpha perturbs T cell development and affects cell cycle entry of T cells. Embo J 1996;15: 6991-7001.

    Google Scholar 

  139. Gil-Gomez G, Berns A, Brady HJ. A link between cell cycle and cell death: Bax and Bcl-2 modulate Cdk2 activation during thymocyte apoptosis. Embo J 1998;17: 7209-7218.

    Google Scholar 

  140. Huang DC, O'Reilly LA, Strasser A, Cory S. The anti-apoptosis function of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry. Embo J 1997;16: 4628-4638.

    Google Scholar 

  141. Li F, Ambrosini G, Chu EY, et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 1998;396: 580-584.

    Google Scholar 

  142. Uren AG, Beilharz T, O'Connell MJ, et al. Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proc Natl Acad Sci USA 1999;96: 10170-10175.

    Google Scholar 

  143. Li F, Flanary PL, Altieri DC, Dohlman HG. Cell division regulation by BIR1, a member of the inhibitor of apoptosis family in yeast. J Biol Chem 2000;275: 6707-6711.

    Google Scholar 

  144. Reed JC, Bischoff JR. BIRinging chromosomes through cell division-and survivin’ the experience. Cell 2000;102: 545-548.

    Google Scholar 

  145. Park JR, Bernstein ID, Hockenbery DM. Primitive human hematopoietic precursors express Bcl-x but not Bcl-2. Blood 1995;86: 868-876.

    Google Scholar 

  146. Peters R, Leyvraz S, Perey L. Apoptotic regulation in primitive hematopoietic precursors. Blood 1998;92: 2041-2052.

    Google Scholar 

  147. Barcena A, Muench MO, Song KS, Ohkubo T, Harrison MR. Role of CD95/Fas and its ligand in the regulation of the growth of human CD34(++)CD38(?) fetal liver cells. Exp Hematol 1999;27: 1428-1439.

    Google Scholar 

  148. Sanz C, Benito A, Inohara N, Ekhterae D, Nunez G, Fernandez-Luna JL. Specific and rapid induction of the proapoptotic protein Hrk after growth factor withdrawal in hematopoietic progenitor cells. Blood 2000;95: 2742-2747.

    Google Scholar 

  149. Pierelli L, Marone M, Bonanno G, et al. Modulation of bcl-2 and p27 in human primitive proliferating hematopoietic progenitors by autocrine TGF-beta1 is a cell cycle-independent effect and influences their hematopoietic potential. Blood 2000;95: 3001-3009.

    Google Scholar 

  150. Phillips RL, Ernst RE, Brunk B, et al. The genetic program of hematopoietic stem cells. Science 2000;288: 1635-1640.

    Google Scholar 

  151. Prasad KV, Ao Z, Yoon Y, et al. CD27, a member of the tumor necrosis factor receptor family, induces apoptosis and binds to Siva, a proapoptotic protein. Proc Natl Acad Sci USA 1997;94: 6346-6351.

    Google Scholar 

  152. Niho Y, Asano Y. Fas/Fas ligand and hematopoietic progenitor cells. Curr Opin Hematol 1998;5: 163-165.

    Google Scholar 

  153. Maciejewski J, Selleri C, Anderson S, Young NS. Fas antigen expression on CD34+human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood 1995;85: 3183-3190.

    Google Scholar 

  154. Takenaka K, Nagafuji K, Harada M, et al. In vitro expansion of hematopoietic progenitor cells induces functional expression of Fas antigen (CD95). Blood 1996;88: 2871-2877.

    Google Scholar 

  155. Maciejewski JP, Selleri C, Sato T, Anderson S, Young NS. Increased expression of Fas antigen on bone marrow CD34+ cells of patients with aplastic anaemia. Br J Haematol 1995;91: 245-252.

    Google Scholar 

  156. Colussi PA, Kumar S. Targeted disruption of caspase genes in mice: What they tell us about the functions of individual caspases in apoptosis. Immunol Cell Biol 1999;77: 58-63.

    Google Scholar 

  157. Nagata S. Fas ligand-induced apoptosis. Annu Rev Genet 1999;33: 29-55.

    Google Scholar 

  158. Matsumoto M, Fu YX, Molina H, Chaplin DD. Lymphotoxin-alpha-deficient and TNF receptor-I-deficient mice define developmental and functional characteristics of germinal centers. Immunol Rev 1997;156: 137-144.

    Google Scholar 

  159. Yeh WC, Pompa JL, McCurrach ME, et al. FADD: Essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 1998;279: 1954-1958.

    Google Scholar 

  160. Yeh WC, Itie A, Elia AJ, et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 2000;12: 633-642.

    Google Scholar 

  161. Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 1998;94: 727-737.

    Google Scholar 

  162. Yoshida H, Kong YY, Yoshida R, et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 1998;94: 739-750.

    Google Scholar 

  163. Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992;356: 215-221.

    Google Scholar 

  164. Lee EY, Chang CY, Hu N, et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 1992;359: 288-294.

    Google Scholar 

  165. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. Effects of an Rb mutation in the mouse. Nature 1992;359: 295-300.

    Google Scholar 

  166. Clarke AR, Maandag ER, van Roon M, et al. Requirement for a functional Rb-1 gene in murine development. Nature 1992;359: 328-330.

    Google Scholar 

  167. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 1993;75: 229-240.

    Google Scholar 

  168. Motoyama N, Wang F, Roth KA, et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 1995;267: 1506-1510.

    Google Scholar 

  169. Print CG, Loveland KL, Gibson L, et al. Apoptosis regulator bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc Natl Acad Sci USA 1998;95: 12424-12431.

    Google Scholar 

  170. Ross AJ, Waymire KG, Moss JE, et al. Testicular degeneration in Bclw-deficient mice. Nat Genet 1998;18: 251-256.

    Google Scholar 

  171. Rinkenberger JL, Horning S, Klocke B, Roth K, Korsmeyer SJ. Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev 2000;14: 23-27.

    Google Scholar 

  172. Deckwerth TL, Elliott JL, Knudson CM, Johnson EM Jr, Snider WD, Korsmeyer SJ. BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 1996;17: 401-411.

    Google Scholar 

  173. Yin XM, Wang K, Gross A, et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 1999;400: 886-891.

    Google Scholar 

  174. Bouillet P, Metcalf D, Huang DC, et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999;286: 1735-1738.

    Google Scholar 

  175. Kuida K, Zheng TS, Na S, et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 1996;384: 368-372.

    Google Scholar 

  176. Varfolomeev EE, Schuchmann M, Luria V, et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 1998;9: 267-276.

    Google Scholar 

  177. Kuida K, Haydar TF, Kuan CY, et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase9. Cell 1998;94: 325-337.

    Google Scholar 

  178. Hakem R, Hakem A, Duncan GS, et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 1998;94: 339-352.

    Google Scholar 

  179. Li P, Allen H, Banerjee S, et al. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 1995;80: 401-411.

    Google Scholar 

  180. Kuida K, Lippke JA, Ku G, et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 1995;267: 2000-2003.

    Google Scholar 

  181. Bergeron L, Perez GI, Macdonald G, et al. Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 1998;12: 1304-1314.

    Google Scholar 

  182. Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 1998;92: 501-509.

    Google Scholar 

  183. Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000;403: 98-103.

    Google Scholar 

  184. Shinkai Y, Rathbun G, Lam KP, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992;68: 855-867.

    Google Scholar 

  185. Nakayama K, Negishi I, Kuida K, et al. Disappearance of the lymphoid system in Bcl-2 homozygous mutant chimeric mice. Science 1993;261: 1584-1588.

    Google Scholar 

  186. Matsuzaki Y, Nakayama K, Tomita T, Isoda M, Loh DY, Nakauchi H. Role of bcl-2 in the development of lymphoid cells from the hematopoietic stem cell. Blood 1997;89: 853-862.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domen, J. The role of apoptosis in regulating hematopoietic stem cell numbers. Apoptosis 6, 239–252 (2001). https://doi.org/10.1023/A:1011347623402

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011347623402

Navigation