Skip to main content
Log in

E2F-1 induced apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Members of the E2F family of transcription factors play an important role in regulating the cell cycle, and their activity is often perturbed during the development of human malignancies. More recent work has shown that E2F-1 regulates apoptosis as well as proliferation, in part by stabilizing the p53 tumor suppressor, an important mediator of apoptosis. This has led to the suggestion that E2F-1 may function as a tumor surveillance mechanism, detecting aberrant proliferation and engaging apoptotic pathways to protect the organism from developing tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev 1998; 12: 2245-2262.

    Google Scholar 

  2. Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T. Regulation of E2F1 activity by acetylation. Embo J 2000; 19: 662-671.

    Google Scholar 

  3. Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K, Giacca M. E2F family members are differentially regulated by reversible acetylation. J Biol Chem 2000; 275: 10887-10892.

    Google Scholar 

  4. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription [see comments]. Nature 1998; 391: 597-601.

    Google Scholar 

  5. Ferreira R, Magnaghi-Jaulin L, Robin P, Harel-Bellan A, Trouche D. The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase. Proc Natl Acad Sci USA 1998; 95: 10493-10498.

    Google Scholar 

  6. Luo RX, Postigo AA, Dean DC. Rb interacts with histone deacetylase to repress transcription. Cell 1998; 92: 463-473.

    Google Scholar 

  7. Magnaghi-Jaulin L, Groisman R, Naguibneva I., et al. Retinoblastoma protein represses transcription by recruiting a histone deacetylase [see comments]. Nature 1998; 391: 601-605.

    Google Scholar 

  8. Moberg K, Starz MA, Lees JA. E2F-4 switches from p130 to p107 and pRB in response to cell cycle reentry. Mol Cell Biol 1996; 16: 1436-1449.

    Google Scholar 

  9. Takahashi Y, Rayman JB, Dynlacht BD. Analysis of promoter binding by the E2F and pRB families in vivo: Distinct E2F proteins mediate activation and repression. Genes Dev 2000; 14: 804-816.

    Google Scholar 

  10. Mittnacht S. Control of pRB phosphorylation. Curr Opin Genet Dev 1998; 8: 21-27.

    Google Scholar 

  11. Hoffmann F, Martelli F, Livingston DM, Wang Z. The retinoblastoma gene product protects E2F-1 from degradation by the ubiquitin-proteasome pathway. Genes and Dev 1996; 10: 2949-2959.

    Google Scholar 

  12. Krek W, Ewen ME, Shirodkar S, Arany Z, Kaelin WG, Livingston DM. Negative regulation of the growth promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell 1994; 78: 161-172.

    Google Scholar 

  13. Johnson DG, Schwarz JK, Cress JD, Nevins JR. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 1993; 365: 349-352.

    Google Scholar 

  14. Qin X-Q, Livingston DM, Kaelin WG, Adams PD. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci USA 1994; 91: 10918-10922.

    Google Scholar 

  15. Shan B, Lee WH. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol Cell Biol 1994; 14: 8166-8173.

    Google Scholar 

  16. Xu GF, Livingston DM, Krek W. Multiple members of the E2F transcription factor family are the products of oncogenes. Proc Natl Acad Sci USA 1995; 92: 1357-1361.

    Google Scholar 

  17. Duronio RJ, O'Farrell PH, Xie J-E, Brook A, Dyson N. The transcriptional factor E2F is required for S phase during Drosophila embryogenesis. Genes and Dev 1995; 9: 1445-1455.

    Google Scholar 

  18. Hall M, Peters G. Genetic alterations of cyclins, cyclin dependent kinases and cdk inhibitors in human cancers. Adv Cancer Res 1996; 68: 67-108.

    Google Scholar 

  19. Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 1989; 243: 934-936.

    Google Scholar 

  20. Boyer SN, Wazer DE, Band V. E7 protein of human papillomavirus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 1996; 56: 4620-4624.

    Google Scholar 

  21. Jones DL, Thompson DA, Munger K. Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology 1997; 239: 97-107.

    Google Scholar 

  22. Cartwright P, Muller H, Wagener C, Holm K, Helin K. E2F-6: a novel member of the E2F family is an inhibitor of E2F dependent transcription. Oncogene 1998; 17: 611-623.

    Google Scholar 

  23. Gaubatz S, Wood JG, Livingston DM. Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6. Proc Natl Acad Sci USA 1998; 95: 9190-9195.

    Google Scholar 

  24. Trimarchi JM, Fairchild B, Verona R, Moberg K, Andon N, Lees JA. E2F-6, a member of the E2F family that can behave as a transcriptional repressor. Proc Natl Acad Sci USA 1998; 95: 2850-2855.

    Google Scholar 

  25. Lukas J, BO. P, Holm K, Bartek J, Helin K. Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol Cell Biol 1996; 16: 1047-1057.

    Google Scholar 

  26. DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci USA 1997; 94: 7245-7250.

    Google Scholar 

  27. Magae J, Wu CL, Illenye S, Harlow E, Heintz NH. Nuclear localization of DP and E2F transcription factors by heterodimeric partners and retinoblastoma protein family members. J Cell Sci 1996; 109: 1717-1726.

    Google Scholar 

  28. de la Luna S, Burden MJ, Lee CW, La Thangue NB. Nuclear accumulation of the E2F heterodimer regulated by subunit composition and alternative splicing of a nuclear localization signal. J Cell Sci 1996; 109: 2443-2452.

    Google Scholar 

  29. Lindeman GJ, Gaubatz S, Livingston DM, Ginsberg D. The subcellular localization of E2F-4 is cell-cycle dependent. Proc Natl Acad Sci USA 1997; 94: 5095-6000.

    Google Scholar 

  30. Muller H, Moroni MC, Vigo E, Petersen BO, Bartek J, Helin K. Induction of S-phase entry by E2F transcription factors depends on their nuclear localization. Mol Cell Biol 1997; 17: 5508-5520.

    Google Scholar 

  31. Verona R, Moberg K, Estes S, Starz M, Vernon JP, Lees JA. E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol Cell Biol 1997; 17: 7268-7282.

    Google Scholar 

  32. Humbert PO, Rogers C, Gianiatsas S, et al. E2F4 is essential for normal erythrocyte maturation and neonatal viability. Molecular Cell 2000; 6: 281-291.

    Google Scholar 

  33. Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S, Lees JA. E2f3 is critical for normal cellular proliferation. Genes Dev 2000; 14: 690-703.

    Google Scholar 

  34. Lindeman GJ, Dagnino L, Gaubatz S, et al. A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting. Genes Dev 1998; 12: 1092-1098.

    Google Scholar 

  35. Rempel RE, Saenz-Robles MT, Storms R, et al. Loss of E2F4 activity leads to Abnormal development of Multiple Cellular Lineages. Molecular Cell 2000; 6: 293-306.

    Google Scholar 

  36. Gaubatz S, Lindeman GJ, Ishida S, et al. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Molecular Cell 2000; 6: 729-735.

    Google Scholar 

  37. Field SJ, Tsai F-Y, Kuo F, et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 1996; 85: 549-561.

    Google Scholar 

  38. Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson N. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 1996; 85: 537-548.

    Google Scholar 

  39. Wang ZM, Yang H, Livingston DM. Endogenous E2F-1 promotes timely G0 exit of resting mouse embryo fibroblasts. Proc Natl Acad Sci USA 1998; 95: 15583-15586.

    Google Scholar 

  40. DiCiommo D, Gallie BL, Bremner R. Retinoblastoma: The disease, gene and protein provide critical leads to understand cancer. Semin Cancer Biol 2000; 10: 255-269.

    Google Scholar 

  41. Gu W, Schneider JW, Condorelli G, Kaushal S, Mahdavi V, Nadal-Ginard B. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 1993; 72: 309-324.

    Google Scholar 

  42. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. Effects of an Rb mutation in the mouse. Nature 1992; 359: 295-300.

    Google Scholar 

  43. Novitch BG, Mulligan GJ, Jacks T, Lassar AB. Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J Cell Biol 1996; 135: 441-456.

    Google Scholar 

  44. Zacksenhaus E, Jiang Z, Chung D, Marth JD, Phillips RA, Gallie BL. pRb controls proliferation, differentiation, and death of skeletal muscle cells and other lineages during embryogenesis. Genes Dev 1996; 10: 3051-3064.

    Google Scholar 

  45. Kouzarides T. Transcriptional control by the retinoblastoma protein. Semin Cancer Biol 1995; 6: 91-98.

    Google Scholar 

  46. Tsai KY, Hu Y, Macleod KF, Crowley D, Yamasaki L, Jacks T. Mutation of E2F-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol Cell 1998; 2: 293-304.

    Google Scholar 

  47. Pierce AM, Schneider-Broussard R, Gimenez-Conti IB, Russell JL, Conti CJ, Johnson DG. E2F1 has both oncogenic and tumor-suppressive properties in a transgenic model. Mol Cell Biol 1999; 19: 6408-6414.

    Google Scholar 

  48. Wang D, Russell JL, Johnson DG. E2F4 and E2F1 have similar proliferative properties but different apoptotic and oncogenic properties in vivo. Mol Cell Biol 2000; 20: 3417-3424.

    Google Scholar 

  49. Hsieh J-K, Fredersdorf S, Kouzarides T, Martin K, Lu X. E2F-1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction. Genes and Dev 1997; 11: 1840-1852.

    Google Scholar 

  50. Phillips AC, Bates S, Ryan KM, Helin K, Vousden KH. Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes and Dev 1997; 11: 1853-1863.

    Google Scholar 

  51. Weinberg RA. E2F and cell proliferation: A world turned upside down. Cell 1996; 85: 457-459.

    Google Scholar 

  52. Yamasaki L, Bronson R, Williams BO, Dyson NJ, Harlow E, Jacks T. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/-)mice. Nat Genet 1998; 18: 360-364.

    Google Scholar 

  53. Symonds H, Krall L, Remington L., et al. p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 1994; 78: 703-711.

    Google Scholar 

  54. Pan H, Yin C, Dyson NJ, Harlow E, Yamasaki L, Van Dyke T. Key roles for E2F1 in signaling p53-dependent apoptosis and in cell division within developing tumors. Mol Cell 1998; 2: 283-292.

    Google Scholar 

  55. Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation. Science 1998; 281: 1305-1308.

    Google Scholar 

  56. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281: 1309-1312.

    Google Scholar 

  57. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33-42.

    Google Scholar 

  58. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 43-53.

    Google Scholar 

  59. Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996; 84: 299-308.

    Google Scholar 

  60. Hsu H, Xiong J, Goeddel. TRADD signals cell death and NF-kB activation. Cell 1995; 81: 495-504.

    Google Scholar 

  61. Liu ZG, Hsu H, Goeddel DV, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996; 87: 565-576.

    Google Scholar 

  62. Chen MJ, Holskin B, Strickler J, et al. Induction by E1A oncogene expression of cellular susceptibility to lysis by TNF. Nature 1987; 330: 581-583.

    Google Scholar 

  63. Klefstrom J, Arighi E, Littlewood T, et al. Induction of TNF-sensitive cellular phenotype by c-Myc involves p53 and impaired NF-·B activation. EMBO J. 1997; 16: 7382-7392.

    Google Scholar 

  64. Phillips AC, Ernst MK, Bates S, Rice NR, Vousden KH. E2F-1 potentiates cell death by blocking anti-apoptotic signaling pathways. Mol Cell 1999; 4: 771-781.

    Google Scholar 

  65. Sionov RV, Haupt Y. The cellular response to p53: The decision between life and death. Oncogene 1999; 18: 6145-6157.

    Google Scholar 

  66. Irwin M, Marin MC, Phillips AC, et al. Role for the p53 homolog p73 in E2F1-induced apoptosis. Nature 407: 645-664.

  67. Corn PG, Kuerbitz SJ, van Noesel MM, et al. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5? CpG island methylation. Cancer Res 1999; 59: 3352-3356.

    Google Scholar 

  68. Kawano S, Miller CW, Gombart AF, et al. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 1999; 94: 1113-1120.

    Google Scholar 

  69. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991; 253: 49-53.

    Google Scholar 

  70. Marin MC, Jost CA, Brooks LA, et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet 2000; 25: 47-54.

    Google Scholar 

  71. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296-299.

    Google Scholar 

  72. Kubbutat MHG, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387: 299-303.

    Google Scholar 

  73. Ashcroft M, Vousden KH. Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol 2000; 20: 3224-3233.

    Google Scholar 

  74. Bates S, Phillips AC, Clarke PA, et al. p14ARF links the tumour suppressors RB and p53. Nature 1998; 395: 124-125.

    Google Scholar 

  75. Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 1998; 95: 8292-8297.

    Google Scholar 

  76. Pomerantz J, Schreiber-Agus N, Liégeois NJ, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 1998; 92: 713-723.

    Google Scholar 

  77. Stott F, Bates SA, James M, et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998; 17: 5001-5014.

    Google Scholar 

  78. Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4? locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92: 725-734.

    Google Scholar 

  79. de Stanchina E, McCurrach ME, Zindy F, et al. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 1998; 12: 2434-2442.

    Google Scholar 

  80. Palmero I, Pantoja C, Serrano M. p19ARF links the tumour suppressor p53 to Ras. Nature 1998; 395: 125-126.

    Google Scholar 

  81. Zindy F, Eischen CM, Randle DH, et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 1998; 12: 2424-2433.

    Google Scholar 

  82. Zhu JW, DeRyckere D, Li FX, Wan YY, DeGregori J. A role for E2F1 in the induction of ARF, p53, and apoptosis during thymic negative selection. Cell Growth Differ 1999; 10: 829-838.

    Google Scholar 

  83. Garcia I, Murga M, Vicario A, Field SJ, Zubiaga AM. A role for E2F1 in the induction of apoptosis during thymic negative selection. Cell Growth Differ 2000; 11: 91-98.

    Google Scholar 

  84. Seavey SE, Holubar M, Saucedo LJ, Perry ME. The E7 oncoprotein of human papillomavirus type 16 stabilizes p53 through a mechanism independent of p19(ARF). J Virol 1999; 73: 7590-7598.

    Google Scholar 

  85. Balint E, Vousden KH. Mdm2 binds p73? without targeting degradation. Oncogene 1999; 18: 3923-3929.

    Google Scholar 

  86. Dobbelstein M, Wienzek S, Konig C, Roth J. Inactivation of the p53-homologue p73 by the mdm2-oncoprotein. Oncogene 1999; 18: 2101-2106.

    Google Scholar 

  87. Ongkeko WM, Wang XQ, Siu WY et al. MDM2 and MDMX bind and stabilize the p53-related protein p73. Curr Biol 1999; 9: 829-832.

    Google Scholar 

  88. Zeng X, Chen L, Jost CA, et al. MDM2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol 1999; 19: 3257-3266.

    Google Scholar 

  89. Vousden KH. Regulation of the cell cycle by viral oncoproteins. Semin Cancer Biol 1995; 6: 109-116.

    Google Scholar 

  90. Cress WD, Nevins JR. Use of the E2F transcription factor by DNA tumor virus regulatory proteins. Curr Top Microbiol Immunol 1996; 208: 63-78.

    Google Scholar 

  91. Roulston A, Marcellus RC, Branton PE. Viruses and apoptosis. Annu Rev Microbiol 1999; 53: 577-628.

    Google Scholar 

  92. Wu XW, Levine AJ. p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA 1994; 91: 3602-3606.

    Google Scholar 

  93. Kowalik TF, Degregori J, Schwarz JK, Nevins JR. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J Virol 1995; 69: 2491-2500.

    Google Scholar 

  94. Morgenbesser SD, Williams BO, Jacks T, DePinho RA. p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 1994; 371: 72-74.

    Google Scholar 

  95. Macleod KF, Hu Y, Jacks T. Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J 1996; 15: 6178-6188.

    Google Scholar 

  96. Pierce AM, Gimenez-Conti IB, Schneider-Broussard R, Martinez LA, Conti CJ, Johnson DG. Increased E2F1 activity induces skin tumors in mice heterozygous and nullizygous for p53. Proc Natl Acad Sci USA 1998; 95: 8858-8863.

    Google Scholar 

  97. Inoue K, Roussel MF, Sherr CJ. Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. Proc Natl Acad Sci USA 1999; 96: 3993-3998.

    Google Scholar 

  98. Shao R, Karunagaran D, Zhou BP, et al. Inhibition of nuclear factor-kappaB activity is involved in E1A-mediated sensitization of radiation-induced apoptosis. J Biol Chem 1997; 272: 32739-32742.

    Google Scholar 

  99. Banerjee D, Schnieders B, Fu JZ, Adhikari D, Zhao SC, Bertino JR. Role of E2F-1 in chemosensitivity. Cancer Res 1998; 58: 4292-4296.

    Google Scholar 

  100. Martin-Duque P, Sanchez-Prieto R, Romero J, et al. In vivo radiosensitizing effect of the adenovirus E1A gene in murine and human malignant tumors. Int J Oncol 1999; 15: 1163-1168.

    Google Scholar 

  101. Ueno NT, Bartholomeusz C, Herrmann JL, et al. E1A-mediated paclitaxel sensitization in HER-2/neu-overexpressing ovarian cancer SKOV3.ip1 through apoptosis involving the caspase-3 pathway. Clin Cancer Res 2000; 6: 250-259.

    Google Scholar 

  102. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF? induced apoptosis by NF-kB. Science 1996; 274: 787-790.

    Google Scholar 

  103. Wang C, Mayo MW, Baldwin Jr, AS, TNF-and cancer therapy induced apoptosis: Potentiation by inhibition of NF-kB. Science 1996; 274: 784-787.

    Google Scholar 

  104. Blattner C, Sparks A, Lane D. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol Cell Biol 1999; 19: 3704-3713.

    Google Scholar 

  105. Hofferer M, Wirbelauer C, Humar B, Krek W. Increased levels of E2F-1-dependent DNA binding activity after UV-or gamma-irradiation. Nucleic Acids Res 1999; 27: 491-495.

    Google Scholar 

  106. O'Connor DJ, Lu X. Stress signals induce transcriptionally inactive E2F-1 independently of p53 and Rb. Oncogene 2000; 19: 2369-2376.

    Google Scholar 

  107. Loughran O, La Thangue NB. Apoptotic and growth-promoting activity of E2F modulated by MDM2. Mol Cell Biol 2000; 20: 2186-2197.

    Google Scholar 

  108. Marti A, Wirbelauer C, Scheffner M, Krek W. Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation [see comments]. Nat Cell Biol 1999; 1: 14-19.

    Google Scholar 

  109. Martin K, Trouche D, Hagemeier C, Sørensen, TS, La Thangue NB, Kouzarides T. Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature 1995; 375: 691-694.

    Google Scholar 

  110. Krek W, Xu G, Livingston DM. Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell 1995; 83: 1149-1158.

    Google Scholar 

  111. Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL. Disruption of the ARF-Mdm2-p53 tumor suppresssotr pathway in Myc-induced lymphomagenesis. Genes and Dev 1999; 13: 2658-2669.

    Google Scholar 

  112. Khan SH, Moritsugu J, Wahl GM. Differential requirement for p19ARF in the p53-dependent arrest induced by DNA damage, microtubule disruption, and ribonucleotide depletion. Proc Natl Acad Sci USA 2000; 97: 3266-3271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, A.C., Vousden, K.H. E2F-1 induced apoptosis. Apoptosis 6, 173–182 (2001). https://doi.org/10.1023/A:1011332625740

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011332625740

Navigation