Skip to main content
Log in

Targeting of 3′-Azido 3′-Deoxythymidine (AZT)-Loaded Poly(Isohexylcyanoacrylate) Nanospheres to the Gastrointestinal Mucosa and Associated Lymphoid Tissues

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The aim of the study was to evaluate the capacity of poly(isohexylcyanoacrylate) nanospheres to concentrate 3′-azido 3′-deoxythymidine (AZT) in the intestinal epithelium and associated immunocompetent cells, which are known to be one of the major reservoirs of the human immunodeficiency virus (HIV).

Methods. The tissue concentration of 3H-radiolabeled AZT in the gastrointestinal (GI) tract was obtained 30 and 90 minutes after intragastric administration to rats at a dose of 0.25 mg AZT/100 g of body weight. The distribution along the intestine was determined. AZT concentrations in the lymph were obtained by lymphatic duct cannulation.

Results. Unlike the solution, nanoparticles did concentrate AZT very efficiently in the intestinal mucosa, as well as in the Peyer's patches, and could simultaneously control the release of free AZT. Concentration in Peyer's patches was 4 times higher for nanoparticles, compared with the control solution. The tissue concentration was 30-45 μM, which was much higher than the reported IC50 of AZT (0.06-1.36 μM) and was regularly distributed along the gastrointestinal tract.

Conclusions. Nanoparticles have been shown to be efficient in concentrating AZT in the intestinal epithelium and gut-associated lymphoid tissues, supporting the view that these particles may represent a promising carrier to treat specifically the GI reservoir of HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Pantaleo, C. Graziosi, J. F. Demarest, L. Butini, M. Montroni, C. H. Fox, J. M. Orenstein, D. P. Kotler, and A. S. Fauci. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362:355-358 (1993).

    Google Scholar 

  2. J. Embretson, M. Zupancic, J. L. Ribas, A. Burke, P. Racz, K. Tenner-Racz, and A. T. Haase. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362:359-362 (1993).

    Google Scholar 

  3. H. B. Mayer and C. A. Wanke. Diagnostic strategies in HIV-infected patients with diarrhea. Aids 8:1639-1648 (1994).

    Google Scholar 

  4. J. A. Nelson, C. A. Wiley, C. Reynolds-Kohler, C. E. Reese, W. Margaretten, and J. A. Levy. Human immunodeficiency virus detected in bowel epithelium from patients with gastrointestinal symptoms. Lancet 1:259-262 (1988).

    Google Scholar 

  5. M. R. Neutra. Interactions of viruses and microparticles with apical plasma membranes of M cells: Implications for human immunodeficiency virus transmission. J. Infect. Dis. 179:S441-443 (1999).

    Google Scholar 

  6. C. Heise, S. Dandekar, P. Kumar, R. Duplantier, R. M. Donovan, and C. H. Halsted. Human immunodeficiency virus infection of enterocytes and mononuclear cells in human jejunal mucosa. Gastroenterology 100:1521-1527 (1991).

    Google Scholar 

  7. T. Schneider, H. U. Jahn, W. Schmidt, E. O. Riecken, M. Zeitz, and R. Ullrich. Loss of CD4 T lymphocytes in patients infected with human immunodeficiency virus type 1 is more pronounced in the duodenal mucosa than in the peripheral blood. Berlin Diarrhea/Wasting Syndrome Study Group. Gut 37:524-529 (1995).

    Google Scholar 

  8. X. Li and W. K. Chan. Transport, metabolism and elimination mechanisms of anti-HIV agents. Adv. Drug Deliv. Rev. 39:81-103 (1999).

    Google Scholar 

  9. G. Ponchel, M.-J. Montisci, A. Dembri, C. Durrer, and D. Duchêne. Mucoadhesion of colloidal particulate systems in gastrointestinal tract. Eur. J. Pharm. Biopharm. 44:25-31 (1997).

    Google Scholar 

  10. R. Löbenberg, L. Araujo, H. von Briesen, E. Rodgers, and J. Kreuter. Body distribution of azidothymidine bound to hexyl-cyanoacrylate nanoparticles after i.v. injection to rats. J. Control. Release 50:21-30 (1998).

    Google Scholar 

  11. A. L. Warshaw. A simplified method of cannulating the intestinal lymphatics of the rat. Gut 13:66-67 (1972).

    Google Scholar 

  12. A. T. Haase, K. Henry, M. Zupancic, G. Sedgewick, R. A. Faust, H. Melroe, W. Cavert, K. Gebhard, K. Staskus, Z. Q. Zhang, P. J. Dailey, H. H. J. Balfour, A. Erice, and A. S. Perelson. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274:985-989 (1996).

    Google Scholar 

  13. J. J. Mathewson, Z. D. Jiang, H. L. DuPont, C. Chintu, N. Luo, and A. Zumla. Intestinal secretory IgA immune response against human immunodeficiency virus among infected patients with acute and chronic diarrhea. J. Infect. Dis. 169:614-617 (1994).

    Google Scholar 

  14. C. Durrer, J. M. Irache, F. Puisieux, D. Duchêne and G. Ponchel. Mucoadhesion of latexes. II. Adsorption isotherms and desorption studies. Pharm. Res. 11:680-683 (1994).

    Google Scholar 

  15. M. P. Desai, V. Labhasetwar, E. Walter, R. J. Levy, and G. L. Amidon. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm. Res. 14:1568-1573 (1997).

    Google Scholar 

  16. G. M. Hodges, E. A. Carr, R. A. Hazzard, and K. E. Carr. Uptake and translocation of microparticles in small intestine. Morphology and quantification of particle distribution. Dig. Dis. Sci. 40:967-975 (1995).

    Google Scholar 

  17. M. W. Smith, N. W. Thomas, P. G. Jenkins, N. G. Miller, D. Cremaschi, and C. Porta. Selective transport of microparticles across Peyer's patch follicle-associated M cells from mice and rats. Exp. Physiol. 80:735-743 (1995).

    Google Scholar 

  18. P. G. Jenkins, K. A. Howard, N. W. Blackhall, N. W. Thomas, S. S. Davis, and D. T. O'Hagan. The quantitation of the absorption of microparticles into the intestinal lymph of Wistar rats. Int. J. Pharm. 102:261-266 (1994).

    Google Scholar 

  19. D. T. O'Hagan. The intestinal uptake of particles and the implications for drug and antigen delivery. J. Anat. 189:477-482 (1996).

    Google Scholar 

  20. N. C. Phillips and C. Tsoukas. Liposomal encapsulation of azidothymidine results in decreased hematopoietic toxicity and enhanced activity against murine acquired immunodeficiency syndrome. Blood 79:1137-1143 (1992).

    Google Scholar 

  21. U. Benatti, M. Giovine, G. Damonte, A. Gasparini, S. Scarfi, A. De Flora, A. Fraternale, L. Rossi, and M. Magnani. Azidothymidine homodinucleotide-loaded erythrocytes and bioreactors for slow delivery of the antiretroviral drug azidothymidine. Biochem. Biophys. Res. Commun. 220:20-25 (1996).

    Google Scholar 

  22. R. Löbenberg, L. Araujo, and J. Kreuter. Body distribution of azidothymidine bound to nanoparticles after oral administration. Eur. J. Pharm. Biopharm. 44:127-132 (1997).

    Google Scholar 

  23. D. Scherer, J. R. Robinson, and J. Kreuter. Influence of enzymes on the stability of polybutylcyanoacrylate nanoparticles. Int. J. Pharm. 101:165-168 (1994).

    Google Scholar 

  24. A. Bender, V. Schäfer, A. M. Steffan, C. Royer, J. Kreuter, H. Rubsamen-Waigmann, and H. von Briesen. Inhibition of HIV in vitro by antiviral drug-targeting using nanoparticles. Res. Virol. 145:215-220 (1994).

    Google Scholar 

  25. V. Schäfer, H. von Briesen, R. Andreesen, A. M. Steffan, C. Royer, S. Troster, J. Kreuter, and H. Rubsamen-Waigmann. Phagocytosis of nanoparticles by human immunodeficiency virus (HIV)-infected macrophages: A possibility for antiviral drug targeting. Pharm. Res. 9:541-546 (1992).

    Google Scholar 

  26. G. Pantaleo, C. Graziosi, L. Butini, P. A. Pizzo, S. M. Schnittman, D. P. Kotler, and A. S. Fauci. Lymphoid organs function as major reservoirs for human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 88:9838-9842 (1991).

    Google Scholar 

  27. P. Herdewijn, J. Balzarini, E. De Clercq, R. Pauwels, M. Baba, S. Broder, and H. Vanderhaeghe. 3′-substituted 2′,3′-dideoxynucleoside analogues as potential anti-HIV (HTLV-III/LAV) agents. J. Med. Chem. 30:1270-1278 (1987).

    Google Scholar 

  28. S. K. Aggarwal, S. R. Gogu, S. R. Rangan, and K. C. Agrawal. Synthesis and biological evaluation of prodrugs of zidovudine. J. Med. Chem. 33:1505-1510 (1990).

    Google Scholar 

  29. B. A. Larder, S. D. Kemp, and P. R. Harrigan. Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination therapy. Science 269:696-699 (1995).

    Google Scholar 

  30. S. M. Daluge, S. S. Good, M. B. Faletto, W. H. Miller, M. H. St. Clair, L. R. Boone, M. Tisdale, N. R. Parry, J. E. Reardon, R. E. Dornsife, D. R. Averett, and T. A. Krenitsky. 1592U89, a novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity. Antimicrob. Agents. Chemother. 41:1082-1093 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dembri, A., Montisci, MJ., Gantier, J.C. et al. Targeting of 3′-Azido 3′-Deoxythymidine (AZT)-Loaded Poly(Isohexylcyanoacrylate) Nanospheres to the Gastrointestinal Mucosa and Associated Lymphoid Tissues. Pharm Res 18, 467–473 (2001). https://doi.org/10.1023/A:1011050209986

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011050209986

Navigation