Skip to main content
Log in

The molecular basis of plant cell wall extension

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In all terrestrial and aquatic plant species the primary cell wall is a dynamic structure, adjusted to fulfil a diversity of functions. However a universal property is its considerable mechanical and tensile strength, whilst being flexible enough to accommodate turgor and allow for cell elongation. The wall is a composite material consisting of a framework of cellulose microfibrils embedded in a matrix of non-cellulosic polysaccharides, interlaced with structural proteins and pectic polymers. The assembly and modification of these polymers within the growing cell wall has, until recently, been poorly understood. Advances in cytological and genetic techniques have thrown light on these processes and have led to the discovery of a number of wall-modifying enzymes which, either directly or indirectly, play a role in the molecular basis of cell wall expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arioli, T., Peng, L.C., Betzner, A.S., Burn, J., Wittke, W., Herth, W. et al. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279: 717–720.

    Google Scholar 

  • Arrowsmith, D.A. and de Silva, J. 1995. Characterization of 2 tomato fruit-expressed cDNAs encoding xyloglucan endo-transglycosylase. Plant Mol. Biol. 28: 391–403.

    Google Scholar 

  • Baba, K., Sone, Y., Misaki, A. and Hayashi, T. 1994. Localization of xyloglucan in the macromolecular complex composed of xyloglucan and cellulose in pea stems. Plant Cell Physiol. 35: 439–444.

    Google Scholar 

  • Brett, C.T., Wende, G., Smith, A.C. and Waldron, K.W. 1999. Biosynthesis of cell-wall ferulate and diferulates. J. Sci. Food Agric. 79: 421–424.

    Google Scholar 

  • Brownleader, M.D., Hopkins, J., Mobasheri, A., Dey, P.M., Jack-son, P. and Trevan, M. 2000. Role of extensin peroxidase in tomato (Lycopersicon esculentum Mill) seedling growth. Planta 210: 668–676.

    Google Scholar 

  • Brummell, D.A., Bird, C.R., Schuch, W. and Bennett, A.B. 1997. An endo-1,4-β-glucanase expressed at high levels in rapidly expanding tissues. Plant Mol. Biol. 33: 87–95.

    Google Scholar 

  • Brummell, D.A., Harpster, M.H. and Dunsmuir, P. 1999. Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol. Biol. 39: 161–169.

    Google Scholar 

  • Campbell, P. and Braam, J. 1998. Co-and/or post-translational modifications are critical for TCH4 XET activity. Plant J. 15: 553–561.

    Google Scholar 

  • Campbell, P. and Braam, J. 1999a. In vitro activities of four xy-loglucan endotransglycosylases from Arabidopsis. Plant J. 18: 371–382.

    Google Scholar 

  • Campbell, P. and Braam, J. 1999b. Xyloglucan endotransglycosy-lases: diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci. 4: 361–366.

    Google Scholar 

  • Carpita, N. 1984. Cell-wall development in maize coleoptiles. Plant Physiol. 76: 205–212.

    Google Scholar 

  • Carpita, N.C. and Gibeaut, D.M. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3: 1–30.

    Google Scholar 

  • Casal, J.J., Mella, R.A., Ballare, C.L. and Maldonados, S. 1994. Phytochrome-mediated effects on extracellular peroxidase activity, lignin content and bending resistance in etiolated Vicia faba epicotyls. Physiol. Plant. 92: 555–562.

    Google Scholar 

  • Catalá, C., Rose, J.K.C. and Bennett, A.B. 1997. Auxin regulation and spatial localization of an endo-1,4-β-D-glucanase and a xy-loglucan endotransglycosylase in expanding tomato hypocotyls. Plant J. 12: 417–426.

    Google Scholar 

  • Cho, H.T. and Cosgrove, D.J. 2000. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97: 9783–9788.

    Google Scholar 

  • Cho, H.T. and Kende, H. 1997a. Expansins and internodal growth of deepwater rice. Plant Physiol. 113: 1145–1151.

    Google Scholar 

  • Cho, H.T. and Kende, H. 1997b. Expansins in deepwater rice internodes. Plant Physiol. 113: 1137–1143.

    Google Scholar 

  • Cho, H.T. and Kende, H. 1998. Tissue localization of expansins in deepwater rice. Plant J. 15: 805–812.

    Google Scholar 

  • Civello, P.M., Powell, A.L.T., Sabehat, A. and Bennett, A.B. 1999. An expansin gene expressed in ripening strawberry fruit. Plant Physiol. 121: 1273–1279.

    Google Scholar 

  • Cosgrove, D.J. 1997. Assembly and enlargement of the primary cell wall in plants. Annu. Rev. Cell Dev. Biol. 13: 171–201.

    Google Scholar 

  • Cosgrove, D.J. 1999. Enzymes and other agents that enhance cell wall extensibility. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 391–417.

    Google Scholar 

  • Cosgrove, D.J. 2000a. Expansive growth of plant cell walls. Plant Physiol. Biochem. 38: 109–124.

    Google Scholar 

  • Cosgrove, D.J. 2000b. New genes and new biological roles for expansins. Curr. Opin. Plant Biol. 3: 73–78.

    Google Scholar 

  • Cosgrove, D.J. and Durachko, D.M. 1994. Autolysis and extension of isolated walls from growing cucumber hypocotyls. J. Exp. Bot. 45: 1711–1719.

    Google Scholar 

  • Cosgrove, D.J. and Li, Z.C. 1993. Role of expansin in cell enlarge-ment of oat coleoptiles: analysis of developmental gradients and photocontrol. Plant Physiol. 103: 1321–1328

    Google Scholar 

  • Cosgrove, D.J., Bedinger, P. and Durachko, D.M. 1997. Group I allergens of grass pollen as cell wall-loosening agents. Proc. Natl. Acad. Sci. USA 94: 6559–6564.

    Google Scholar 

  • Davies, G.J., Tolley, S.P., Henrissat, B., Hjort, C. and Schulein, M. 1995. Structures of oligosaccharide-bound forms of the en-doglucanase V from Humicola insolens at 1.9 Å resolution. Biochemistry 34: 16210–16220.

    Google Scholar 

  • Desnos, T., Orbovic, V., Bellini, C., Kronenberger, J., Caboche, M., Traas, J. and Hofte, H. 1996. Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark and light-grown Arabidopsis seedlings. Development 122: 683–693.

    Google Scholar 

  • Downes, B.P. and Crowell, D.N. 1998. Cytokinin regulates the expression of a soybean β-expansin gene by a post-transcriptional mechanism. Plant Mol. Biol. 37: 437–444.

    Google Scholar 

  • Esch, R.E. and Klapper, D.G. 1989. Isolation and characterization of a major cross-reactive grass group-I allergenic determinant. Mol. Immunol. 26: 557–561.

    Google Scholar 

  • Esquerré-Tugayé, M.-T., Lafitte, C., Mazau, D., Toppan, A. and Touze, A. 1979. Cell services in plant-microorganism interactions II. Evidence for the accumulation of hydroxyproline-rich glycoprteins in the cell wall of diseased plants as a defense mechanism. Plant Physiol. 64: 320–326.

    Google Scholar 

  • Fagard, M., Desnos, T., Desprez, T., Goubet, F., Refregier, G., Mouille, G. et al. 2000. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12: 2409–2423.

    Google Scholar 

  • Fleming, A.J., McQueen-Mason, S., Mandel, T. and Kuhlemeier, C. 1997. Induction of leaf primordia by the cell wall protein expansion. Science 276: 1415–1418.

    Google Scholar 

  • Fry, S.C. 1988. The Growing Plant Cell Wall: Chemical and Metabolic Analysis. John Wiley, New York.

    Google Scholar 

  • Fry, S.C. 1998. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem. J. 332: 507–515.

    Google Scholar 

  • Fry, S.C., Smith, R.C., Renwick, K.F., Martin, D.J., Hodge, S.K., and Matthews, K.J. 1992. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem. J. 282: 821–828.

    Google Scholar 

  • Gilkes, N.R., Henrissat, B., Kilburn, D.G., Miller, R.C. and Warren, R.A.J. 1991. Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol. Rev. 55: 303–315.

    Google Scholar 

  • Goldberg, R., Liberman, M., Mathieu, C., Pierron, M., and Catesson, A.M. 1987. Development of epidermal-cell wall peroxidases along the mung bean hypocotyl: possible involvement in the cell wall stiffening process. J. Exp. Bot. 38: 1378–1390.

    Google Scholar 

  • Hall, L.N., Tucker, G.A., Smith, C.J.S., Watson, C.F., Seymour, G.B., Bundick, Y. et al. 1993. Antisense inhibition of pectin esterase gene-expression in transgenic tomatoes. Plant J. 3: 121–129.

    Google Scholar 

  • Hamamoto, T., Foong, F., Shoseyov, O. and Doi, R.H. 1992. Analysis of functional domains of endoglucanases from Clostridium cellulovorans by gene cloning, nucleotide sequencing and chimeric protein construction. Mol. Gen. Genet. 231: 472–479.

    Google Scholar 

  • Hauser, M.T., Morikami, A. and Benfey, P.N. 1995. Conditional root expansion mutants of Arabidopsis. Development 121: 1237–1252.

    Google Scholar 

  • Hayashi, T., Marsden, M.P.F. and Delmer, D.P. 1987. Pea xyloglucan and cellulose 5. Xyloglucan-cellulose interactions in vitro and in vivo. Plant Physiol 83: 384–389.

    Google Scholar 

  • Hoson, T., Masuda, Y., Sone, Y. and Misaki, A. 1991. Xyloglucan antibodies inhibit auxin-induced elongation and cell-wall loos-ening of azuki-bean epicotyls but not of oat coleoptiles. Plant Physiol 96: 551–557.

    Google Scholar 

  • Im, K.H., Cosgrove, D.T. and Jones, A.M. 2000. Subcellular localization of expansin mRNA in xylem cells. Plant Physiol. 123: 463–470.

    Google Scholar 

  • Inouhe, M. and Nevins, D.J. 1991. Inhibition of auxin-induced cell elongation in maize coleoptiles by antibodies specific for cell wall glucanases. Plant Physiol. 96: 426–431.

    Google Scholar 

  • Kauss, H. and Hassid, W.Z. 1967. Enzymic introduction of the methyl ester groups of pectin. J. Biol. Chem. 242: 3449–3453.

    Google Scholar 

  • Kim, J., Olek, A. and Carpita, N. 2000. Cell wall and membrane-associated exo-β-D-glucanases from developing maize seedlings. Plant Physiol. 123: 471–485.

    Google Scholar 

  • Knox, J., Linstead, P., King, J., Cooper, C. and Roberts, K. 1990. Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181: 512–521.

    Google Scholar 

  • Labavitch, J.M. and Ray, P.M. 1974. The relationship between promotion of xyloglucan metabolism and the induction of elongation by indoleacetic acid. Plant Physiol. ?? (AUTHOR: please mention volume): 499–502.

  • Labrador, E. and Nevins, D.J. 1989. An exo-β-D-glucanase derived from Zea coleoptile walls with a capacity to elicit cell elongation. Physiol. Plant. 77: 479–486.

    Google Scholar 

  • Lamport, D.T.A. 1986. The primary cell wall: a new model. In: Cellulose: Structure, Modification and Hydrolysis,John Wiley, New York, pp.77–90.

    Google Scholar 

  • Matthysse, A.G., Thomas, D.L. and White, A.R. 1995a. Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J. Bact. 177: 1076–1081.

    Google Scholar 

  • Matthysse, A.G., White, S. and Lightfoot, R. 1995b. Genes required for cellulose synthesis in Agrobacterium tumefaciens. J. Bact. 177: 1069–1075.

    Google Scholar 

  • McCann, M.C. and Roberts, K. 1994. Changes in cell wall architecture during cell elongation. J. Exp. Bot. 45: 1683–1691.

    Google Scholar 

  • McCann, M.C., Wells, B. and Roberts, K. 1990. Direct visualization of cross-links in the primary plant cell wall. J. Cell Sci. 96: 323–334.

    Google Scholar 

  • McCann, M.C., Stacey, N.J., Wilson, R. and Roberts, K. 1993. Orientation of macromolecules in the walls of elongating carrot cells. J. Cell Sci. 106: 1347–1356.

    Google Scholar 

  • McQueen-Mason, S.J. 1995. Expansins and cell-wall expansion. J. Exp. Bot. 46: 1639–1650.

    Google Scholar 

  • McQueen-Mason, S.J. and Cosgrove, D.J. 1994. Disruption of hydrogen-bonding between plant cell wall polymers by proteins that induce wall extension. Proc. Natl. Acad. Sci. USA 91: 6574–6578.

    Google Scholar 

  • McQueen-Mason, S.J. and Cosgrove, D.J. 1995. Expansin mode of action on cell walls: analysis of wall hydrolysis, stress-relaxation, and binding. Plant Physiol. 107: 87–100.

    Google Scholar 

  • McQueen-Mason, S.J. and Rochange, F. 1999. Expansins in plant growth and development: an update on an emerging topic. Plant Biol. 1: 19–25.

    Google Scholar 

  • McQueen-Mason, S., Durachko, D.M. and Cosgrove, D.J. 1992. Two endogenous proteins that induce cell-wall extension in plants. Plant Cell 4: 1425–1433.

    Google Scholar 

  • McQueen-Mason, S.J., Fry, S.C., Durachko, D.M. and Cosgrove, D.J. 1993. The relationship between xyloglucan endotransglycosylase and in vitro cell wall extension in cucumber hypocotyls. Planta 190: 327–331.

    Google Scholar 

  • Nicol, F., His, I., Jauneau, A., Vernhettes, S., Canut, H. and Hofte, H. 1998. A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 17: 5563–5576

    Google Scholar 

  • Nishitani, K. 1997. The role of endoxyloglucan transferase in the organization of plant cell walls. Int. Rev. Cytol. 173: 157–206.

    Google Scholar 

  • Nishitani, K. and Masuda, Y. 1983. Auxin-induced changes in the cell-wall xyloglucans: effects of auxin on the 2 different subfractions of xyloglucans in the epicotyl cell-wall of Vigna angularis.Plant Cell Physiol. 24: 345–355.

    Google Scholar 

  • Nishitani, K. and Tominaga, R. 1992. Endoxyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J. Biol. Chem. 267: 21058–21064.

    Google Scholar 

  • Okamoto-Nakazato, A., Nakamura, T. and Okamoto, H. 2000. The isolation of wall-bound proteins regulating yield threshold tension in glycerinated hollow cylinders of cowpea hypocotyl. Plant Cell Environ. 23: 145–154.

    Google Scholar 

  • Pauly, M., Albersheim, P., Darvill, A. and York, W.S. 1999. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20: 629–639.

    Google Scholar 

  • Rayle, D.L., Haughton, P.M. and Cleland, R. 1970. An in vitro sys-tem that simulates plant cell extension growth. Proc. Natl. Acad. Sci. USA 67: 1814–1817.

    Google Scholar 

  • Redgwell, R.J. and Fry, S.C. 1993. Xyloglucan endotransglycosylase activity increases during kiwifruit (Actinidia deliciosa) ripening. Plant Physiol. 103: 1399–1406.

    Google Scholar 

  • Reiter, W.D., Chapple, C. and Somerville, C.R. 1997. Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J. 12: 335–345.

    Google Scholar 

  • Rizk, S.E., Abdel-Massih, R.M., Baydoun, E.-H. and Brett, C.T. 2000. Protein-and pH-dependent binding of nascent pectin and glucuronoarabinoxylan to xyloglucan in pea. Planta 211: 423–429.

    Google Scholar 

  • Rose, J.K.C., Lee, H.H. and Bennett, A.B. 1997. Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc. Natl. Acad. Sci. USA 94: 5955–5960.

    Google Scholar 

  • Rose, J., Hadfield, K., Labavitch, J. and Bennett, A. 1998. Temporal sequence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiol. 117: 345–361.

    Google Scholar 

  • Rose, J.K.C., Cosgrove, D.J., Albersheim, P., Darvill, A.G. and Bennett, A.B. 2000. Detection of expansin proteins and activity during tomato fruit ontogeny. Plant Physiol. 123: 1583–1592.

    Google Scholar 

  • Saab, I.N. and Sachs, M.M. 1996. A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma. Plant Physiol. 112: 385–391.

    Google Scholar 

  • Schindler, M.G., Bergfeld, R., Ruel, K., Jacquet, G., Lapierre, C., Speth, V. and Schopfer, P. 1997. Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analysed by chemical and immunological probes. Planta 201: 146–159.

    Google Scholar 

  • Schopfer, P. 1996. Hydrogen peroxidase-mediated cell wall stiffening in vitro in maize coleoptiles. Planta 199: 43–49.

    Google Scholar 

  • Schroder, R., Atkinson, R.G., Langenkamper, G. and Redgwell, R.J. 1998. Biochemical and molecular characterisation of xyloglucan endotransglycosylase from ripe kiwifruit. Planta 204: 242–251.

    Google Scholar 

  • Schweikert, C., Liszkay, A. and Schopfer, P. 2000. Scission of polysaccharides by peroxidase-generated hydroxyl radicals. Phytochemistry 53: 565–570.

    Google Scholar 

  • Serpe, M.D. and Nothnagel, E.A. 1993. Effects of Yariv phenylgly-cosides on Rosa cell suspensions: evidence for the involvement of arabinogalactan-proteins in cell proliferation. Planta 193: 542–550.

    Google Scholar 

  • Shcherban, T.Y., Shi, J., Durachko, D.M., Guiltinan, M.J., Mcqueenmason, S.J., Shieh, M. and Cosgrove, D.J. 1995. Molecular cloning and sequence analysis of expansins: a highly conserved, multigene family of proteins that mediate cell-wall extension in plants. Proc. Natl. Acad. Sci. USA 92: 9245–9249.

    Google Scholar 

  • Shedletzky, E., Shmuel, M., Delmer, D.P. and Lamport, D.T.A. 1990. Adaptation and growth of tomato cells on the herbicide 2,6-dichlorobenzonitrile leads to production of unique cell walls virtually lacking a cellulose-xyloglucan network. Plant Physiol. 94: 980–987.

    Google Scholar 

  • Shimizu, Y., Aotsuka, S., Hasegawa, O., Kawada, T., Sakuno, T., Sakai, F. and Hayashi, T. 1997. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant Cell Physiol. 38: 375–378.

    Google Scholar 

  • Showalter, A.M., Bell, J.N., Cramer, C.L., Bailey, J.A., Varner, J.E. and Lamb, C.J. 1985. Accumulation of hydroxyproline-rich glycoprotein messenger RNAs in response to fungal elicitor and infection. Proc. Natl. Acad. Sci. USA 82: 6551–6555.

    Google Scholar 

  • Shpigel, E., Roiz, L., Goren, R. and Shoseyov, O. 1998. Bacterial cellulose-binding domain modulates in vitro elongation of different plant cells. Plant Physiol. 117: 1185–1194.

    Google Scholar 

  • Steele, N.M. and Fry, S.C. 1999. Purification of xyloglucan endotransglycosylases (XETs): a generally applicable and simple method based on reversible formation of an enzyme-substrate complex. Biochem J. 340: 207–211.

    Google Scholar 

  • Sulova, Z., Takacova, M., Steele, N.M., Fry, S.C. and Farkas, V. 1998. Xyloglucan endotransglycosylase: evidence for the existence of a relatively stable glycosyl-enzyme intermediate. Biochem. J. 330: 1475–1480.

    Google Scholar 

  • Swoap, S.J., Sooudi, S.K. and Shinkle, J.R. 1993. Uncorrelated changes in the distribution of stem elongation, tissue extensibilty and cell wall peroxidase-activity along hypocotyl axes of Cucumis seedlings exhibiting different patterns of growth. Plant Physiol. Biochem. 31: 361–368.

    Google Scholar 

  • Talbott, L.D. and Ray, P.M. 1992. Changes in the molecular size of previously deposited and newly synthesised pea cell wall matrix polysaccharides. Plant Physiol. 98: 369–379.

    Google Scholar 

  • Tan, K.S., Hoson, T., Masuda, Y. and Kamisaka, S. 1992. Involvement of cell wall-bound diferulic acid in light-induced decrease in growth rate and cell wall extensibility of Oryza coleoptiles. Plant Cell Physiol. 33: 103–108.

    Google Scholar 

  • Thompson, J.E., Smith, R.C. and Fry, S.C. 1997. Xyloglucan undergoes interpolymeric transglycosylation during binding to the plant cell wall in vivo: evidence from C-13/H-3 dual la-belling and isopycnic centrifugation in caesium trifluoroacetate. Biochem J. 327: 699–708.

    Google Scholar 

  • Vissenberg, K., Martinez-Vilchez, I.M., Verbelen, J.P., Miller, J.G. and Fry, S.C. 2000. In vivo colocalization of xyloglucan endo-transglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. Plant Cell 12: 1229–1237.

    Google Scholar 

  • Whitney, S.E.C., Brigham, J.E., Darke, A.H., Reid, J.S.G. and Gidley, M.J. 1998. Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydrate Res. 307: 299–309.

    Google Scholar 

  • Whitney, S.E.C., Gothard, M.G.E., Mitchell, J.T. and Gidley, M.J. 1999. Roles of cellulose and xyloglucan in determining the me-chanical properties of primary plant cell walls. Plant Physiol. 121: 657–663.

    Google Scholar 

  • Whitney, S.E.C., Gidley, M.J. and McQueen-Mason, S.J. 2000. Probing expansin action using cellulose/hemicellulose composites. Plant J. 22: 327–334.

    Google Scholar 

  • Willats, W.G.T. and Knox, J.P. 1996. A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of β-glucosyl Yariv reagent with seedlings of Arabidopsis thaliana. Plant J. 9: 919–925.

    Google Scholar 

  • Wright, H.T., Sandrasegaram, G., and Wright, C.S. 1991. Evolution of a family of N-acetylglucosamine binding proteins containing. the disulfide-rich domain of wheat germ agglutinin. J. Mol. Evol. 33: 283–294.

    Google Scholar 

  • Xu, W., Purugganan, M.M., Polisensky, D.H., Antosiewicz, D.M., Fry, S.C. and Braam, J. 1995. Arabidopsis tch4, regulated by hormones and the environment, encodes a xyloglucan endotrans-glycosylase. Plant Cell 7: 1555–1567.

    Google Scholar 

  • Xu, W., Campbell, P., Vargheese, A.K. and Braam, J. 1996. The Arabidopsis XET-related gene family: environmental and hormonal regulation of expression. Plant J. 9: 879–889.

    Google Scholar 

  • Ye, Z.H., Song, Y.R., Marcus, A., and Varner, J.E. 1991. Comparative localization of 3 classes of cell-wall proteins. Plant J. 1: 175–183.

    Google Scholar 

  • Zablackis, E., York, W.S., Pauly, M., Hantus, S., Reiter, W.D., Chapple, C.C.S. et al. 1996. Substitution of L-fucose by L-galactose in cell walls of Arabidopsis mur1. Science 272: 1808–1810.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darley, C.P., Forrester, A.M. & McQueen-Mason, S.J. The molecular basis of plant cell wall extension. Plant Mol Biol 47, 179–195 (2001). https://doi.org/10.1023/A:1010687600670

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010687600670

Navigation