Skip to main content
Log in

Biotransformations of selenium by Enterobacter cloacae SLD1a-1: Formation of dimethylselenide

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Whole-cell suspensions of Enterobactercloacae SLD1a-1 produced dimethylselenide(DMSe) from selenate, selenite, elementalselenium, dimethylselenone,seleno-DL-methionine, 6-selenoinosine, and6-selenopurine. Cell-free extracts of thebacterium produced the formation of DMSe fromorganic selenium compounds, includingdimethylselenone, dimethylselenoniopropionate,seleno-DL-methionine, seleno-DL-ethionine, and6-selenoguanosine. The highest rate of DMSeproduction occurred from whole-cell suspensionsand cell-free extracts containingdimethylselenone. DMSe was also produced bycell-free extracts containing selenite orelemental selenium and methylcobalamin. Cell-free extracts did not produce DMSe frominorganic selenium when S-adenosyl-L-methionine was present. Additionally, DL-homocysteine and L-methioninewere found to inhibit selenium volatilization. These findings suggest the formation of DMSefrom inorganic selenium occurs through thetransfer of a methyl group frommethylcobalamin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansede JH &Yoch DC (1997) Comparison of selenium and sulfur volatilization by dimethylsulfoniopropionate (DMSP) lyase in two marine bacteria and estuarine sediments. FEMS Microbiol. Ecol. 23: 315–324

    Google Scholar 

  • Ansede JH,Pellechia PJ &Yoch DC (1999) Selenium biotransformation by the salt marsh cordgrass Spartina alterniflora: Evidence for dimethylselenoniopropionate formation. Environ. Sci. Technol. 33: 2064–2069

    Google Scholar 

  • Barkes L &Fleming RW (1974) Production of dimethylselenide gas from inorganic selenium by eleven soil fungi. Bull. Environ. Contamin. Toxicol. 12: 308–311

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem. 72: 248–254

    Google Scholar 

  • Challenger F (1945) Biological methylation. Chem. Rev. 36: 315–361

    Google Scholar 

  • Choi S-C,Chase T &Bartha R (1994) Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS. Appl. Environ. Microbiol. 60: 4072–4077

    Google Scholar 

  • Cook TD &Bruland KW (1987) Aquatic chemistry of selenium: Evidence of biomethylation. Environ. Sci. Technol. 21: 1214–1219

    Google Scholar 

  • Doran JW &Alexander M (1977) Microbial transformations of selenium. Appl. Environ. Microbiol. 33: 31–37

    Google Scholar 

  • Doran JW (1982) Microorganisms and the biological cycling of selenium. In: Marshall KC (Ed.) Advances in Microbial Ecology (pp 1–32). Plenum Press, New York, NY

    Google Scholar 

  • Dungan RS &Frankenberger Jr WT (1998) The reduction of selenite to elemental selenium by Enterobacter cloacae SLD1a-1. J. Environ. Qual. 27: 1301–1306

    Google Scholar 

  • Dungan RS &Frankenberger Jr WT (1999) Microbial transformations of selenium and the bioremediation of seleniferous environments. Bioremediation J. 3: 171–188

    Google Scholar 

  • Dungan RS &Frankenberger Jr WT (2000) Factors affecting the volatilization of dimethylselenide by Enterobacter cloacae SLD1a-1. Soil Biol. Biochem. 32: 1353–1358

    Google Scholar 

  • Fleming RW &Alexander M (1972) Dimethylselenide and dimethyltelluride formation by a strain of Penicillium. Appl. Microbiol. 24: 424–429

    Google Scholar 

  • Foster MA,Dilworth MJ &Woods DD (1964) Cobalamin and the synthesis of methionine by Escherichia coli. Nat. (London) 201: 39–42

    Google Scholar 

  • Haygarth PM (1994) Global importance of global cycling of selenium. In: Frankenberger Jr WT &Benson S (Eds.) Selenium in the Environment (pp 1–28). Marcel Dekker, Inc., New York, NY

    Google Scholar 

  • Hoffman JL &McConnell KP (1987) Periodate-oxidized adenosine inhibits the formation of dimethylselenide and trimethylselenonium ion in mice treated with selenite. Arch. Biochem. Biophys. 254: 534–540

    Google Scholar 

  • Lander L (1971) Biochemical model for the biological methylation of mercury suggested from methylation studies in vivo with Neurospora crassa. Nat. 230: 452–454

    Google Scholar 

  • Linstrand K (1964) Isolation of methylcobalamin from natural source material. Nat. 204: 188–189

    Google Scholar 

  • Losi ME &Frankenberger Jr WT (1997) Reduction of selenium oxyanions by Enterobacter cloacae strain SLD1a-1: Isolation and growth of the bacterium and its expulsion of selenium particles. Appl. Environ. Microbiol. 63: 3079–3084

    Google Scholar 

  • McBride BC &Wolfe RS (1971) Biosynthesis of dimethylarsine by methanobacterium. Biochem. 10: 4312–4317

    Google Scholar 

  • Oehme FW (1972) Mechanisms of heavy metal toxicities. Clin. Toxicol. 5: 131–167

    Google Scholar 

  • Oldfield JE (1998) Environmental implications of uses of selenium with animals. In: Frankenberger Jr WT &Enberg RA (Eds.) Environmental Chemistry of Selenium (pp 129–142). Marcel Dekker, Inc., New York, NY

    Google Scholar 

  • Reamer DC &Zoller WH (1980) Selenium biomethylation products form soil and sewage sludge. Sci. 208: 500–502

    Google Scholar 

  • Ridley WP,Dizikes LJ &Wood JM (1977) Biomethylation of toxic elements in the environment. Sci. 197: 329–332

    Google Scholar 

  • Saltzman ES &Cooper WJ (1989) Biogenic sulfur in the environment. Am. Chem. Soc. Symp. Series No. 393. Washington, DC

  • Stryer L (1995) Biochemistry, 4th edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Tandon SK,Magos L &Webb M (1986) The stimulation and inhibition of the exhalation of volatile selenium. Biochem. Pharmacol. 35: 2763–2766

    Google Scholar 

  • Taylor BF &Gilchrist DC (1991) New routes for aerobic biodegradation of dimethylsulfoniopropionate. Appl. Environ. Microbiol. 57: 3581–3584

    Google Scholar 

  • Thompson-Eagle ET,Frankenberger Jr WT &Karlson U (1989) Volatilization of selenium by Alternaria alternata. Appl. Environ. Microbiol. 55: 1406–1413

    Google Scholar 

  • Zhang L &Chasteen TG (1994) Amending cultures of selenium-resistant bacteria with dimethyl selenone. Appl. Organometal. Chem. 8: 501–508.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dungan, R.S., Frankenberger, W.T. Biotransformations of selenium by Enterobacter cloacae SLD1a-1: Formation of dimethylselenide. Biogeochemistry 55, 73–86 (2001). https://doi.org/10.1023/A:1010640307328

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010640307328

Navigation