Skip to main content
Log in

Introduction into Plant Genomics

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The success in complete sequencing of “small” genomes and development of new technologies that markedly speed up the cloning and sequencing processes open the way to intense development of plant genomics and complete sequencing of DNA of some species. It is assumed that success in plant genomics will result in revolutionary changes in biotechnology and plant breeding. However, the enormous size of genomes (tens of billions of base pairs), their extraordinary abundance of repetitive sequences, and allopolyploidy (the presence in a nucleus of several related but not identical genomes) force us to think that only few “basic” plant species will undergo complete sequencing, whereas genome investigations in other species will follow the principles of comparative genomics. By the present time, sequencing of the Arabidopsis genome (125 Mbp) is completed and that of the rice genome (about 430 Mbp) is close to its end. Studying the genomes of other plants, including economically valuable ones, already began on the basis of these works. The peculiarities of plant genomes make extraordinarily important our detailed knowledge on plant chromosomes which, in its turn, calls for expansion of research in this direction and development of new chromosome technologies, including the DNA-sparing methods of high-resolution banding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aparicio, S., Nature Genet., 1998, vol. 18, pp. 301–303.

    Google Scholar 

  2. Burris, J., Cook-Deegan, R., and Alberts, B., Nature Genet., 1998, vol. 20, pp. 333–335.

    Google Scholar 

  3. Dunham, I., Shimizu, N., Roe, B.A., Chissoe, S., et al., Nature, 1999, vol. 402, pp. 489–502.

    Google Scholar 

  4. Littele, P., Nature, 1999, vol. 402, pp. 467–468.

    Google Scholar 

  5. Phillips, R.L. and Freeling, M., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 1969–2032.

    Google Scholar 

  6. Timbertake, W.E., Nature Biotechnol., 1998, vol. 16, pp. 116–117.

    Google Scholar 

  7. Pen, A., Science, 1998, vol. 282, pp. 652–654.

    Google Scholar 

  8. James, R., Nature Biotechnol., 2000, vol. 20, pp. 153–155.

    Google Scholar 

  9. Bennetzen, J.L., Trends Genet., 1999, vol. 15, pp. 85–87.

    Google Scholar 

  10. Winkler, H., Verbreitung und Versache der Parthenegenesis im Pflanzen und Tierre, Jena, 1920.

  11. Riger, R. and Michaelis, A., A Dictionary in Genetics and Cytogenetics, Moscow: Kolos, 1967, p. 81.

    Google Scholar 

  12. Kartel', N.A., Makeeva, E.N., and Mezenko, A.M., Genetika. Entsiklopedicheskii slovar' (Genetics. Encyclopaedic Dictionary). Minsk: Tekhnologiya, 1999, p. 90.

    Google Scholar 

  13. Kiselev, L.L., Ontogenez, 1999, vol. 28, pp. 233–236.

    Google Scholar 

  14. Methods in Genome Analysis in Plants, Jauhar, P.P., Ed., Boca Raton: CRC, 1996.

    Google Scholar 

  15. Baev, A.A., Venkstern, T.V., and Mirzabekov, A.D., Mol. Biol., 1967, vol. 1, pp. 754–765.

    Google Scholar 

  16. Walbot, W., Nature, 2000, vol. 408, pp. 794–795.

    Google Scholar 

  17. Zhuravleva, G.A., Mironova, L.I., and Inge-Vechtomov, S.G., Mol. Biol., 2000, vol. 34, pp. 560–571.

    Google Scholar 

  18. The C. elegans Sequence Consortium, Science, 1998, vol. 282, pp. 2012–2018.

  19. Meyerowitz, E.M., Nature, 1999, vol. 402, pp. 731–732.

    Google Scholar 

  20. Lin, X., Kaul, S., Rounsley, S., et al., Nature, 1999, vol. 402, pp. 761–767.

    Google Scholar 

  21. Mayer, K., Schuller, C., Wambutt, R., et al., Nature, 1999, vol. 402, pp. 769–777.

    Google Scholar 

  22. The Arabidopsis Genome Initiative, Nature, 2000, vol. 408, pp. 796–813.

  23. Theologis, A., Ecker, J.R., Palm, C.J., et al., Nature, 2000, vol. 408, pp. 816–820.

    Google Scholar 

  24. Salanoubat, M., Lemcke, K., Rieger, M., et al., Nature, 2000, vol. 408, pp. 820–822.

    Google Scholar 

  25. Tabata, S., Nature, 2000, vol. 408, pp. 823–826.

    Google Scholar 

  26. Ventor, J.C., Adams, M.D., Sutton, G.G., et al., Science, 1998, vol. 280, pp. 1541–1543.

    Google Scholar 

  27. Tatevosov, S., Kommersant Den'gi, 2000, no. 20 (273), pp. 45–50.

    Google Scholar 

  28. Adams, M.D., Celniker, S.E., Holt, R.A., et al., Science, 2000, vol. 287, pp. 2185–2195.

    Google Scholar 

  29. Hodgkin, J., Nature, 2000, vol. 404, pp. 442–443.

    Google Scholar 

  30. Butler, D., Nature, 1999, vol. 401, pp. 729–730.

    Google Scholar 

  31. Kornberg, T.B. and Krasnov, M.A., Science, 2000, vol. 287, p. 2218.

    Google Scholar 

  32. Rubin, G.M. and Lewis, E.B., Science, 2000, vol. 287, pp. 2216–2218.

    Google Scholar 

  33. Flavell, R.B. and Smith, D.B., Heredity, 1976, vol. 37, pp. 231–252.

    Google Scholar 

  34. Flavell, R.B., Rimpau, J., and Smith, D.B., Chromosoma, 1977, vol. 63, pp. 205–222.

    Google Scholar 

  35. Flavell, R.B., O'Dell, M., and Smith, D., Heredity, 1979, vol. 42, pp. 309–322.

    Google Scholar 

  36. Bennett, M.D., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 2011–2016.

    Google Scholar 

  37. Bevan, M. and Murphy, G., Trends Genet., 1999, vol. 15, pp. 211–214.

    Google Scholar 

  38. Adams, D., Nature, 2000, vol. 408, pp. 792–793.

    Google Scholar 

  39. Bennetzen, J.L., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 1975–1978.

    Google Scholar 

  40. Jiang, J. and Gill, B.S., Genome, 1994, vol. 37, pp. 717–725.

    Google Scholar 

  41. Tanksley, S.D., Ganal, M.W., and Martin, G.R., Trends Genet., 1995, vol. 11, pp. 63–68.

    Google Scholar 

  42. Gale, M.D. and Devos, K.M., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 1971–1974.

    Google Scholar 

  43. Busch, W., Martin, R., Herrmann, R.G., and Hohmann, U., Genome, 1995, vol. 38, pp. 1082–1090.

    Google Scholar 

  44. Mao, Y.W., Liang, S.Y., Song, W.Q., et al., Cell Res., 1998, vol. 8, pp. 285–293.

    Google Scholar 

  45. Zhou, Y., Hu, Z., Dang, B., et al., Chromosoma, 1999, vol. 108, pp. 250–255.

    Google Scholar 

  46. Shibata, F., Hizume, M., and Kuroki, Y., Chromosoma, 1999, vol. 108, pp. 266–270.

    Google Scholar 

  47. Hernould, M., Glimelius, K., Veuskens, J., et al., Plant J., 1997, vol. 12, pp. 703–709.

    Google Scholar 

  48. Moore, G., Gale, M.D., Kurata, N., and Flavel, R., Bio-Technology, 1993, vol. 11, pp. 584–589.

    Google Scholar 

  49. Messing, J. and Llaca, V., Proc. Natl. Acad Sci. USA, 1998, vol. 95, pp. 2017–2020.

    Google Scholar 

  50. Penisi, E., Science, 2000, vol. 290, pp. 2220–2221.

    Google Scholar 

  51. Sommerville, C. and Dangl, J., Science, 2000, vol. 290, pp. 2077–2078.

    Google Scholar 

  52. Vision, T.J., Brown, D.G., and Tanksley, S.D., Science, 2000, vol. 290, pp. 2114–2117.

    Google Scholar 

  53. Sasaki, T., Proc. Natl. Acad Sci. USA, 1998, vol. 95, pp. 2027–2028.

    Google Scholar 

  54. Dennis, C., Nature, 2000, vol. 408, p. 791.

    Google Scholar 

  55. Kato, K., Miura, H., and Sawada, S., Genome, 1999, vol. 42, pp. 204–209.

    Google Scholar 

  56. Ratber, M., Nature Biotechnol., 1998, vol. 16, pp. 810–811.

    Google Scholar 

  57. Moore, G., Foote, T., Helentjaris, T., et al., Trends Genet., 1995, vol. 11, pp. 81–82.

    Google Scholar 

  58. Linde-Laursen, I., Cytology and Cytogenetics of Hordeum vulgare and Some Alien Species Using Chromosome Banding Technique, Riso: R-529, 1985.

    Google Scholar 

  59. Muravenko, O.V., Badaev, N.S., Badaeva, E.D., et al., Dokl. Akad. Nauk SSSR, 1986, vol. 288, pp. 724–727.

    Google Scholar 

  60. Badaeva, E.D., Sozinova, L.F., Badaev, N.S., et al., Cereal Res. Commun., 1990, vol. 18, pp. 273–281.

    Google Scholar 

  61. Badaeva, E.D., Budashkina, E.B., Badaev, N.S., et al., Theor. Appl. Genet., 1991, vol. 82, pp. 227–232.

    Google Scholar 

  62. Gill, B.S., Friebe, B., and Endo, T.R., Genome, 1991, vol. 34, pp. 830–839.

    Google Scholar 

  63. Friebe, B. and Gill, B.S., Methods in Genome Analysis in Plants, Jauhar, P.P., Ed., Boca Raton: CRC Press, 1996, pp. 39–60.

    Google Scholar 

  64. Muravenko, O.V., Fedotov, A.R., Punina, E.O., et al., Genome, 1998, vol. 41, pp. 616–625.

    Google Scholar 

  65. Badaeva, E.D., Friebe, B., and Gill, B.S., Genome, 1996, vol. 39, pp. 293–306.

    Google Scholar 

  66. Badaeva, E.D., Friebe, B., and Gill, B.S., Genome, 1996, vol. 39, pp. 1150–1158.

    Google Scholar 

  67. Samatadze, T.E., Muravenko, O.V., Klimakhin, G.I., and Zelenin, A.V., Genetika, 1997, vol. 33, pp. 130–132.

    Google Scholar 

  68. Kao, F.T., Methods in Genome Analysis in Plants, Jauhar, P.P., Ed., Boca Raton: CRC, 1996, pp. 329–343.

    Google Scholar 

  69. Rodova, M.A., Zoshchuk, S.A., Barskii, V.E., et al., Genetika, 1995, vol. 31, pp. 1016–1020.

    Google Scholar 

  70. Jung, C., Claussen, U., Horsthemke, B., et al., Plant Mol. Biol., 1992, vol. 20, pp. 503–511.

    Google Scholar 

  71. Heslop-Harrison, J.S. and Schwarzacher, T., Methods in Genome Analysis in Plants, Jauhar, P.P., Ed., Boca Raton: CRC, 1996, pp. 163–180.

    Google Scholar 

  72. Mukai, Y., Methods in Genome Analysis in Plants, Jauhar, P.P., Ed., Boca Raton: CRC, 1996, pp. 181–194.

    Google Scholar 

  73. Gill, B.S. and Friebe, B., Current Opin. Plant Biol., 1998, vol. 1, pp. 16–39.

    Google Scholar 

References

  1. Ventor, J.C., Adams, M.G., Myers, E.W., et al., Science, 2001, vol. 291, pp. 1304–1351.

    Google Scholar 

  2. Pennisi, E., Science, 2001, vol. 291, pp. 1177–1180.

    Google Scholar 

  3. Roberts, L., Science, 2001, vol. 291, pp. 1182–1188.

    Google Scholar 

  4. Marshall, E., Science, 2001, vol. 291, pp. 1189–1193.

    Google Scholar 

  5. Claverie, J-M., Science, 2001, vol. 291, pp. 1255–1257.

    Google Scholar 

  6. Galas, D.J., Science, 2001, vol. 291, pp. 1257–1261.

    Google Scholar 

  7. Baltimore, D., Nature, 2001, vol. 409, pp. 814–816.

    Google Scholar 

  8. Olson, M., Nature, 2001, vol. 409, pp. 816–818.

    Google Scholar 

  9. Bork, P. and Copley, R., Nature, 2001, vol. 409, pp. 818–820.

    Google Scholar 

  10. Birney, E., Bateman, A., Clamp, M.E., and Hubbard, T.J., Nature, 2001, vol. 409, pp. 827–828.

    Google Scholar 

  11. The International Human Genome Consortium, Nature, 2001, vol. 409, pp. 860–921.

    Google Scholar 

  12. The International Human Genome Consortium, Nature, 2001, vol. 409, pp. 934–941.

    Google Scholar 

  13. Aach, J., Bulyk, M.L., Church, G.M., et al., Nature, 2001, vol. 409, pp. 858–859.

    Google Scholar 

  14. Montgomery, K.T., Lee, E., Miller, A., et al., Nature, 2001, vol. 409, pp. 945–946.

    Google Scholar 

  15. Bruls, T., Gyapay, G., and Petit, J.-L., Nature, 2001, vol. 409, pp. 947–948.

    Google Scholar 

  16. Tilford, C.A., Kuroda-Kawguchi, T., Skaletski, H., et al., Nature, 2001, vol. 409, pp. 943–945.

    Google Scholar 

  17. Bentley, D.R., Deloukas, P., French, L., et al., Nature, 2001, vol. 409, pp. 942–943.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelenin, A.V., Badaeva, E.D. & Muravenko, O.V. Introduction into Plant Genomics. Molecular Biology 35, 285–293 (2001). https://doi.org/10.1023/A:1010499106365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010499106365

Navigation