Skip to main content
Log in

Aerobic Methylobacteria Are Capable of Synthesizing Auxins

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Obligately and facultatively methylotrophic bacteria with different pathways of C1 metabolism were found to be able to produce auxins, particularly indole-3-acetic acid (IAA), in amounts of 3–100 μg/ml. Indole-3-pyruvic acid and indole-3-acetamide were detected only in methylobacteria with the serine pathway of C1 metabolism (Methylobacterium mesophilicumand Aminobacter aminovorans).The production of auxins by methylobacteria was stimulated by the addition of L-tryptophan to the growth medium and was inhibited by ammonium ions. The methylobacteria under study lacked tryptophan decarboxylase and tryptophan side-chain oxidase. At the same time, they were found to contain several aminotransferases. IAA is presumably synthesized by methylobacteria through indole-3-pyruvic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fall, R., Cycling of Methanol between Plants, Methylotrophs, and the Atmosphere, Microbial Growth on C1 Compounds, Lindstrom, M.E. and Tabita, F.R., Eds., Dordrecht: Kluwer Academic, 1996, pp. 343–350.

    Google Scholar 

  2. Long, R., Morris, R., and Polacco, J., Cytokinin Production by Plant-associated Methylotrophic Bacteria, Plant Physiol., 1997, Abstr. no. 1168.

  3. Shepelyakovskaya, A.O., Doronina, N.V., Laman, A.G., Brovko, F.A., and Trotsenko, Yu.A., New Evidence for the Ability of Aerobic Methylotrophic Bacteria to Synthesize Cytokinins, Dokl. Akad. Nauk, 1999, vol. 368, no. 4, pp. 555–557.

    Google Scholar 

  4. Ivanova, E.G., Doronina, N.V., Shepelyakovskaya, A.O., Laman, A.G., Brovko, F.A., and Trotsenko, Yu.A., Facultative and Obligate Aerobic Methylobacteria Synthesize Cytokinins, Mikrobiologiya, 2000, vol. 69, no. 6, pp. 764–769.

    Google Scholar 

  5. Gordon, S.A. and Weber, R.P., Colorimetric Estimation of Indole-Acetic Acid, Plant Physiol., 1951, vol. 26, pp. 192–195.

    Google Scholar 

  6. Kirchner, J., Thin-Layer Chromatography, New York: Wiley, 1978, vol. 1, p. 242.

    Google Scholar 

  7. Yokota, T., Murofushi, N., and Takahashi, N., Extraction, Purification, and Identification, Hormonal Regulation of Development, MacMillan, J., Ed., Berlin: Springer, 1980, vol. 1, pp. 113–202.

    Google Scholar 

  8. Oberhansli, T., Defago, G., and Haas, D., Indole-3-Acetic Acid (IAA) Synthesis in the Biocontrol Strain CHAO of Pseudomonas fluorescens: Role of Tryptophan Side Chain Oxidase, J. Gen. Microbiol., 1991, vol. 137, pp. 2273–2279.

    Google Scholar 

  9. Manual of Methods for General Bacteriology, Gerhardt, P. et al., Eds., Washington: Am. Soc. Microbiol., 1981. Translated under the title Metody obshchei bakteriologii, Moscow: Mir, 1984, vol. 3.

    Google Scholar 

  10. Paris, C.G. and Magasanic, B., Tryptophan Metabolism in Klebsiella aerogenes: Regulation of the Utilization of Aromatic Amino Acids as Sources of Nitrogen, J. Bacteriol., 1981, vol. 145, no. 1, pp. 257–265.

    Google Scholar 

  11. Schneider, E.A. and Wightman, F., Metabolism of Auxin in Higher Plants, Annu. Rev. Plant Physiol., 1974, vol. 25, pp. 487–513.

    Google Scholar 

  12. Sharma, P.K. and Chakhal, V.P.S., Effect of Amino Group Acceptors on the Synthesis of Indole-3-Acetic Acid from Tryptophan by an Azotobacter, Mikrobiologiya, 1986, vol. 55, no. 6, pp. 1041–1043.

    Google Scholar 

  13. Mordukhova, E.A., Skvortsova, N.P., Kochetkov, V.V., Dubeikovskii, A.N., and Boronin, A.M., Synthesis of the Phytohormone Indole-3-Acetic Acid by Rhizosphere Bacteria of the Genus Pseudomonas, Mikrobiologiya, 1991, vol. 60, no. 3, pp. 494–499.

    Google Scholar 

  14. Crozier, A., Arruda, P., Jasmin, J.M., Monteiro, A.M., and Sandberg, G., Analysis of Indole-3-Acetic Acid and Related Indoles in Culture Medium from Azospirillum lipoferum and Azospirillum brasilense, Appl. Environ. Microbiol., 1988, vol. 54, no. 11, pp. 2833–2837.

    Google Scholar 

  15. Ruckadaschel, E., Kittell, B.L., Helinski, D.R., and Klingmuller, W., Aromatic Amino Acid Aminotransferases of Azospirillum lipoferum and Their Possible Involvement in IAA Biosynthesis, Azospirillum IV: Genetics, Physiology, Ecology, Klingmüller, W., Ed., Berlin, 1988, pp. 49–53.

  16. Fett, W.F., Osman, S.F., and Dunn, M.F., Auxin Production by Plant-Pathogenic Pseudomonas and Xanthomonas, Appl. Environ. Microbiol., 1987, vol. 53, pp. 1839–1845.

    Google Scholar 

  17. Libbert, E., Wichner, S., Schiewer, U., Risch, H., and Kaiser, W., The Influence of Epiphytic Bacteria on Auxin Metabolism, Planta, 1966, vol. 68, pp. 327–334.

    Google Scholar 

  18. Austin, B. and Goodfellow, M., Pseudomonas mesophilica, a New Species of Pink Bacteria Isolated from Leaf Surfaces, Int. J. Syst. Bacteriol., 1979, vol. 29, no. 1, pp. 373–378.

    Google Scholar 

  19. Doronina, N.V., Kudinova, L.V., and Trotsenko, Yu.A., Methylovorus mays, a Novel Species of Plant-associated Aerobic Obligate Methylobacteria, Mikrobiologiya, vol. 69, no. 5, pp. 599–603.

  20. Urakami, T., Araki, H., Oyanagi, H., Suzuki, K., and Komagata, K., Transfer of Pseudomonas aminovorans (den Dooren de Jong 1926) to Aminobacter gen. nov. as Aminobacter aminovorans comb. nov. and Description of Aminobacter aganoensis sp. nov. and Aminobacter niigataensis sp. nov., Int. J. Syst. Bacteriol., 1992, vol. 42, no. 1, pp. 84–92.

    Google Scholar 

  21. Doronina, N.V. and Trotsenko, Yu.A., Novel Plant-associated Thermotolerant Alkaliphilic Methylotroph of the Genus Paracoccus, Mikrobiologiya, vol. 69, no. 5, pp. 593–598.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, E.G., Doronina, N.V. & Trotsenko, Y.A. Aerobic Methylobacteria Are Capable of Synthesizing Auxins. Microbiology 70, 392–397 (2001). https://doi.org/10.1023/A:1010469708107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010469708107

Navigation