Skip to main content
Log in

Soil and rhizosphere as habitats for Pseudomonas inoculants: new knowledge on distribution, activity and physiological state derived from micro-scale and single-cell studies

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Pseudomonas spp. comprise an important group of bacteria used for biological control of microfungi in the plant rhizosphere. Successful performance of microbial inoculants requires both establishment, proliferation and activity under in situ conditions. To identify the factors controlling fate and performance of the inoculants, small-scale analyses are needed due to the heterogeneity characterizing the complex soil and rhizosphere environments. Direct staining techniques and advanced microscopy have provided the first detailed single-cell images of root colonization by these bacteria using fluorescent antibodies, fluorescent in situ hybridization and marker gene technology. These tracking methods have, in conjunction with activity assays, provided high-resolution data on the metabolic activity and growth of the inoculants. Finally, Pseudomonas reporter bacteria constructed to sense phosphorus, nitrogen, iron, and oxygen limitations have provided new insight into the significance of growth-limiting factors in the soil and along the root. The present work reviews the current knowledge on Pseudomonas inoculants in soil and rhizosphere based on these modern techniques. Finally, some perspectives for future studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahl T, Christoffersen K, Riemann B and Nybroe O 1995 A combined microcosm and mesocosm approach to examine factors affecting survival and mortality of Pseudomonas fluorescens Ag1 in seawater. FEMS Microbiol. Ecol. 17, 107–116.

    Google Scholar 

  • Amann R I, LudwigWand Schleifer K 1995 Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169.

    Google Scholar 

  • Araujo MA V, Mendonca-Hagler L C, Hagler A N and van Elsas J D 1994 Survival of genetically modified Pseudomonas fluorescens introduced into subtropical soil microcosms. FEMS Microbiol. Ecol. 13, 205–216.

    Google Scholar 

  • Beauchamp C J, Kloepper J W and Lemke P A 1993 Luminometric analyses of plant root colonization by bioluminescent pseudomonads. Can. J. Microbiol. 39, 434–441.

    Google Scholar 

  • Binnerup S J, Jensen D F, Thordal-Christensen H and Sørensen J 1993 Detection of viable, but non-culturable Pseudomonas fluorescens DF57 in soil using a microcolony epifluorescence technique. FEMS Microbiol. Ecol. 12, 97–105.

    Google Scholar 

  • Bloemberg G V, O'Toole G A, Lugtenberg B J J and Kolter R 1997 Green fluorescent protein as a marker for Pseudomonas spp. Appl. Environ. Microbiol. 63, 4543–4551.

    Google Scholar 

  • Boelens J, Woestyne MV and Verstraete W 1994 Ecological importance of motility for the plant growth-promoting rhizopseudomonas strain ANP15. Soil Biol. Biochem. 26, 269–277.

    Google Scholar 

  • Boye M, Ahl T and Molin S 1995 Application of a strain-specific rRNA oligonucleotide probe targeting Pseudomonas fluorescens Ag1 in a mesocosm study of bacterial release into the environment. Appl. Environ. Microbiol. 61, 1384–1390.

    Google Scholar 

  • Brennerova M V and Crowley D E 1994 Direct detection of rhizosphere-colonizing Pseudomonas sp. using an Escherichia coli rRNA promotor in a Tn7-lux system. FEMSMicrobiol. Ecol. 14, 319–330.

    Google Scholar 

  • Cebolla A, Guzmán C and de Lorenzo V 1996 Nondisruptive detection of activity of catabolic promotors of Pseudomonas putida with an antigenic surface reporter system. Appl. Environ. Microbiol. 62, 214–220.

    Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward W W and Prasher D C 1994 Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Google Scholar 

  • Chin-A-Woeng TFC, de Priester W, van der Bij A J and Lugtenberg B J J 1997 Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol. Plant-Microbe Interact. 10,79–86.

    Google Scholar 

  • Christensen H, Hansen M and Sørensen J 1999 Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide probe. Appl. Environ. Microbiol. 65, 1753–1761.

    Google Scholar 

  • Dandurand L M, Schotzko D J and Knudsen G R 1997 Spatial patterns of rhizoplane populations of Pseudomonas fluorescens. Appl. Environ. Microbiol. 63, 3211–3217.

    Google Scholar 

  • de Bruijn F J and Rossbach S 1994 Transposon mutagenesis. In Methods for General and Molecular Bacteriology. Ed. P Gerhardt. pp 387–405. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • de Lorenzo V, Herrero M, Sánchez J M and Timmis K N 1998 Mini-transposons in microbial ecology and environmental biotecnology. FEMS Microbiol. Ecol. 27, 211–224.

    Google Scholar 

  • de Weger L A, Dunbar P, Mahaffee W F, Lugtenberg B J J and Sayler G S 1991 Use of bioluminescence markers to detect Pseudomonas spp. in the rhizosphere. Appl. Environ. Microbiol. 57, 3641–3644.

    Google Scholar 

  • de Weger L A, Dekkers L C, van der Bij A J and Lugtenberg B J J 1994 Use of phosphate-reporter bacteria to study phosphate limitation in the rhizosphere and in bulk soil.Mol. Plant-Microbe Interact. 7, 32–38.

    Google Scholar 

  • Errampalli D, Leung K, Cassidy M B, Kostrzynska M, Blears M, Lee H and Trevors J T 1999 Applications of the green fluorescent protein as a molecular marker in environmental microorganisms. J. Microbiol. Methods 35, 187–199.

    Google Scholar 

  • Hansen M, Kragelund L, Nybroe O and Sørensen J 1997 Early colonization of barley roots by Pseudomonas fluorescens studied by immunofluorescence technique and confocal laser scanning microscopy. FEMS Microbiol. Ecol. 23, 353–360.

    Google Scholar 

  • Højberg O and Sørensen J 1993 Microgradients of microbial oxygen consumption in a barley rhizosphere model system. Appl. Environ. Microbiol. 59, 431–437.

    Google Scholar 

  • Højberg O, Revsbech N P and Tiedje J M 1994 Denitrification in soil aggregates analyzed with microsensors for nitrous oxide and oxygen. Soil Sci. Soc. Am. J. 58, 1691–1698.

    Google Scholar 

  • Højberg O, Schnider U, Winteler H V, Sørensen J and Haas D 1999 Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. Appl. Environ. Microbiol. 65, 4085–4093.

    Google Scholar 

  • Jaeger C H III, Lindow S E, Miller W, Clark E and Firestone M K 1999 Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl. Environ. Microbiol. 65, 2685–2690.

    Google Scholar 

  • Jansson J K 1998 Marker Genes as Tags for Monitoring Microorganisms in Nature. An Opinion. MAREP (Marker/reporter genes in microbial ecology): A Concerted Action; European Commision Biotechnology Programme, DGXII, Borås, Sweden.

  • Jansson J K and Prosser J I 1997 Quantification of the presence and activity of specific microorganisms in nature. Mol. Biotechnol. 7, 103–120.

    Google Scholar 

  • Jensen L E and Nybroe O 1999 Nitrogen availability to Pseudomonas fluorescens DF57 is limited during decomposition of barley straw in bulk soil and in the barley rhizosphere. Appl. Environ. Microbiol. 65, 4320–4328.

    Google Scholar 

  • Jensen L E, Kragelund L and Nybroe O 1998 Expression of a nitrogen regulated lux gene fusion in Pseudomonas fluorescens DF57 studied in pure culture and in soil. FEMS Microbiol. Ecol. 25, 23–32.

    Google Scholar 

  • Kogure K, Simidu U and Taga N 1979 A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25, 415–420.

    Google Scholar 

  • Kragelund L and Nybroe O 1996 Competition between Pseudomonas fluorescens Ag1 and Alcaligenes eutrophus JMP134 (pJP4) during colonization of barley roots. FEMS Microbiol. Ecol. 20, 41–51.

    Google Scholar 

  • Kragelund L, Christoffersen B, Nybroe O and de Bruijn F J 1995 Isolation of lux reporter gene fusions in Pseudomonas fluorescens DF57 inducible by nitrogen or phosphorus starvation. FEMS Microbiol. Ecol. 17, 95–106.

    Google Scholar 

  • Kragelund L, Leopold K and Nybroe O 1996 Outer membrane protein heterogeneity within Pseudomonas fluorescens and P. putida and use of an OprF antibody as a probe for rRNA homology group I pseudomonads. Appl. Environ. Microbiol. 62, 480–485.

    Google Scholar 

  • Kragelund L, Hosbond C and Nybroe O 1997 Distribution of metabolic activity and phosphate starvation response of luxtagged Pseudomonas fluorescens reporter bacteria in the barley rhizosphere. Appl. Environ. Microbiol. 63, 4920–4928.

    Google Scholar 

  • Leopold K, Jacobsen S and Nybroe O 1997 A phosphate-starvationinducible outer-membrane protein of Pseudomonas fluorescens Ag1 as an immunological phosphate-starvation marker. Microbiology 143, 1019–1027.

    Google Scholar 

  • Lindow S E 1995 The use of reporter genes in the study of microbial ecology. Mol. Ecol. 4, 555–566.

    Google Scholar 

  • Loper J E and Henkels M D 1997 Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol. 63, 99–105.

    Google Scholar 

  • Loper J E and Henkels M D 1999 Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol. 65, 5357–5363.

    Google Scholar 

  • Loper J E and Lindow S E 1994 A biological sensor for iron available to bacteria in their habitats on plant surfaces. Appl. Environ. Microbiol. 60, 1934–1941.

    Google Scholar 

  • Lübeck P S, Hansen M and Sørensen J 2000 Simultaneous detection of the establishment of seed-inoculated Pseudomonas fluorescens strain DR54 and native soil bacteria on sugar beet root surfaces using fluorescence antibody and in situ hybridization technique. FEMS Microbiol. Ecol. 33: 11–19.

    Google Scholar 

  • Marschner P and Crowley D E 1996 Physiological activity of a bioluminescent Pseudomonas fluorescens (strain 2-79) in the rhizosphere of mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.). Soil Biol. Biochem. 28, 869–876.

    Google Scholar 

  • Marschner P and Crowley D E 1997 Iron stress and pyoverdin production by a fluorescent pseudomonad in the rhizosphere of white lupine (Lupinus alba L.) and barley (Hordeum vulgare L.). Appl. Environ. Microbiol. 63, 277–281.

    Google Scholar 

  • Marschner P and Crowley D E 1998 Phytosiderophores decrease iron stress and pyoverdine production of Pseudomonas fluorescens Pf-5 (pvd-InaZ). Soil Biol. Biochem. 30, 1275–1280.

    Google Scholar 

  • Meikle A, Glover L A, Killham K and Prosser J I 1994 Potential luminescence as an indicator of activation of genetically-modified Pseudomonas fluorescens in liquid culture and in soil. Soil Biol. Biochem. 26, 747–755.

    Google Scholar 

  • Meikle A, Amin-Hanjani S, Glover L A, Killham K and Prosser J I 1995 Matric potential and the survival and activity of a Pseudomonas fluorescens inoculum in soil. Soil Biol. Biochem. 27, 881–892.

    Google Scholar 

  • Nielsen M N, Sørensen J, Fels J and Pedersen H C 1998 Secondary metabolite-and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl. Environ. Microbiol. 64, 3563–3569.

    Google Scholar 

  • Normander B, Hendriksen N B and Nybroe O 1999 Green fluorescent protein-marked Pseudomonas fluorescens: localization, viability, and activity in the natural barley rhizosphere. Appl. Environ. Microbiol. 65, 4646–4651.

    Google Scholar 

  • Nybroe O 1995 Assessment of metabolic activity of single bacterial cells — new developments in microcolony and dehydrogenase assays. FEMS Microbiol. Ecol. 17, 77–84.

    Google Scholar 

  • Oliver J D 1993 Formation of viable but nonculturable cells. In Starvation in Bacteria. Ed. S Kjelleberg. pp 239–272. Plenum, New York.

    Google Scholar 

  • Prosser JI 1994 Molecular marker systems for detection of genetically engineered micro-organisms in the environment. Microbiology 140, 5–17.

    Google Scholar 

  • Prosser J I, Killham K, Glover L A and Rattray E A S 1996 Luminescence-based systems for detection of bacteria in the environment. Crit. Rev. Biotech. 16, 157–183.

    Google Scholar 

  • Ramos C, Mølbak L and Molin S 2000 Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl. Environ. Microbiol. 66, 801–809.

    Google Scholar 

  • Rattray E A S, Prosser J I, Glover L A and Killham K 1995 Characterization of rhizosphere colonization by luminescent Enterobacter cloacae at the population and single-cell levels. Appl. Environ. Microbiol. 61, 2950–2957.

    Google Scholar 

  • Ravnskov S, Nybroe O and Jakobsen I 1999 Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. New Phytol. 142, 113–122.

    Google Scholar 

  • Silcock D J, Waterhouse R N, Glover L A, Prosser J I and Killham K 1992 Detection of a single genetically modified bacterial cell in soil by using charge coupled device-enhanced microscopy. Appl. Environ. Microbiol. 58, 2444–2448.

    Google Scholar 

  • Simons M, van der Bij A J, Brand I, de Weger L A, Wijffelman C A and Lugtenberg B J J 1996 Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant-Microbe Interactions 9, 600–607.

    Google Scholar 

  • Simons M, Permentier H P, de Weger L A, Wijffelman C A and Lugtenberg B J J 1997 Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol. Plant-Microbe Interact. 10, 102–106.

    Google Scholar 

  • Sternberg C, Christensen B B, Johansen T, Nielsen A T, Andersen J B, Givskov M and Molin S 1999 Distribution of bacterial growth activity in flow-chamber biofilms. Appl. Environ. Microbiol. 65, 4108–4117.

    Google Scholar 

  • Sørensen J 1997 The rhizosphere as a habitat for soil microorganisms. In Modern Soil Microbiology. Eds. J D van Elsas, J T Trevors and E M H Wellington. pp 21–45. Marcel Dekker, New York.

    Google Scholar 

  • Sørensen S J and Jensen L E 1998 Transfer of plasmid RP4 in the spermosphere and rhizosphere of barley seedling. Antonie van Leeuwenhoek 73, 69–77.

    Google Scholar 

  • Tombolini R, van der Gaag D J, Gerhardson B and Jansson J K 1999 Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA 342 on barley seeds visualized by using green fluorescent protein. Appl. Environ. Microbiol. 65, 3674–3680.

    Google Scholar 

  • Troxler J, Zala M, Natsch A, Moënne-Loccoz Y and Defago G 1997a Autecology of the biocontrol strain Pseudomonas fluorescens CHA0 in the rhizosphere and inside roots at later stages of plant development. FEMS Microbiol. Ecol. 23, 119–130.

    Google Scholar 

  • Troxler J, Zala M, Moënne-Loccoz Y, Keel C and Defago G 1997b Predominance of nonculturable cells of the biocontrol strain Pseudomonas fluorescens CHA0 in the surface horizon of large outdoor lysimeters. Appl. Environ. Microbiol. 63, 3776–3782.

    Google Scholar 

  • Unge A, Tombolini R, Mølbak L and Jansson J K 1999 Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl. Environ. Microbiol. 65, 813–821.

    Google Scholar 

  • van Overbeek LS and van Elsas J D 1995 Root exudate-induced promoter activity in Pseudomonas fluorescens mutants in the wheat rhizosphere. Appl. Environ. Microbiol. 61, 890–898.

    Google Scholar 

  • van Overbeek LS, van Elsas J D and van Veen J A 1997 Pseudomonas fluorescens Tn5-B20 mutant RA92 responds to carbon limitation in soil. FEMS Microbiol. Ecol. 24, 57–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sørensen, J., Jensen, L.E. & Nybroe, O. Soil and rhizosphere as habitats for Pseudomonas inoculants: new knowledge on distribution, activity and physiological state derived from micro-scale and single-cell studies. Plant and Soil 232, 97–108 (2001). https://doi.org/10.1023/A:1010338103982

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010338103982

Navigation