Skip to main content
Log in

Longevity and aging: beneficial effects ofexposure to mild stress

  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Every organism has to deal with exposure to stresses.Animals have developed various strategies to cope with stress. It appears that the developed resistanceto stress is often related to longevity. Somescientists have advanced the hypothesis that thestress response may also counteract the negativeeffects of aging, and that exposing organisms to amild, sublethal stress, inducing a stress response,may help them to live longer. Several mild stresseshave been reported to increase longevity (irradiation,heat and cold shock, hypergravity, exercise, etc.), andone of them, hypergravity, to decrease the rate ofbehavioral aging. The mechanisms whereby thesestresses increase longevity have not yet been elucidated.However, the studies conducted so far show that theymay involve metabolic regulation and stress protein(hsps) induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen RG and Sohal RS (1982) Life-lengthening effects of gammaradiation on the adult housefly, Musca domestica. Mech Ageing Dev 20: 369-375

    PubMed  Google Scholar 

  • Aly KB, Pipkin JL, Hinson WG, Feuers RJ, Duffy PH, Lyn-Cook L, Hart RW et al. (1994) Chronic caloric restriction induces stress proteins in the hypothalamus of rats. Mech Ageing Dev 76: 11-23

    PubMed  Google Scholar 

  • Austad SN (1989) Life extension by dietary restriction in the bowl and doily spider, Frontinella pyramitela. Exp Gerontol 24: 83-92

    PubMed  Google Scholar 

  • Benjamin IJ and McMillan DR (1998) Stress (heat shock) proteins molecular chaperones in cardiovascular biology and disease. Circ Res 83: 117-132

    PubMed  Google Scholar 

  • Brar BK, Stephanou A, Wagstaff MJD, Coffin RS, Marber MS, Engelmann G, Latchman DS et al. (1999) Heat shock proteins delivered with a virus vector can protect cardiac cells against apoptosis as well as against thermal or hypoxic stress. J Mol Cell Cardiol31: 135-146

    PubMed  Google Scholar 

  • Caratero A, Courtade M, Bonnet L, Planel H, Caratero C et al. (1998) Effect of a continuous gamma irradiation at very low dose on the life span of mice. Gerontoly 44: 272-276

    Google Scholar 

  • Chapman T and Partridge L (1996) Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc R Soc London 263: 755-759

    Google Scholar 

  • Chapman T, Hutchings J, Partridge L et al. (1993) No reduction in the cost of mating for Drosophila melanogaster females mating with spermless males. Proc R Soc London 253: 211-217

    Google Scholar 

  • Chen CP and Walker VK (1993) Increase in cold-shock tolerance by selection of cold resistant lines in Drosophila melanogaster. Ecological Entomol 18: 184-190

    Google Scholar 

  • Chippindale AK, Leroi AM, Kim SB, Rose MR et al. (1993) Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of reproduction. J Evol Biol 6: 171-193

    Google Scholar 

  • Chong KY, Lai CC, Lille S, Chang C, Su CY et al. (1998) Stable overexpression of the constitutive form of heat shock protein 70 confers oxidative protection. J Mol Cell Cardiol 30: 599-608

    PubMed  Google Scholar 

  • Couzin J. (1998) Low-calorie diets may slow monkey's aging. Science 282: 1018.

    Google Scholar 

  • Curtsinger JW, Fukui HH, Resler AS, Kelly K, Khazaeli AA et al. (1998) Genetic analysis of extended life span in Drosophila melanogaster I. RAPD screen for genetic divergence between selected and control lines. Genetica 104: 21-32

    PubMed  Google Scholar 

  • Dahlgaard J, Loeschcke V, Michalak P, Justesen J et al. (1998) Induced thermotolerance and associated expression of the heatshock protein Hsp70 in adult Drosophila melanogaster. Funct Ecol 12: 786-793

    Google Scholar 

  • David J, Van Herrewege J, Fouillet P et al. (1971) Quantitative under-feeding of Drosophila: effects on adult longevity and fecundity. Exp Gerontol 6: 249-257

    PubMed  Google Scholar 

  • De Benedictis G, Carotenuto L, Carrieri G, De Luca M, Falcone E, Rose G, Cavalcanti S, Corsonello F, Feraco E, Baggio G, Bertolini S, Mari D, Mattace R, Yashin AI, Bonafè M, Franceschi C et al. (1998) Gene/longevity association studies at four autosomal loci (REN, THO, PARP, SOD2). Eur J Hum Gen 6: 534-541

    PubMed  Google Scholar 

  • Ehrenfried JA, Evers BM, Chu KU, Townsend CM, Thompson JC et al. (1996) Caloric restriction increases the expression of heat shock protein in the gut. Ann Surg 223: 592-599

    PubMed  Google Scholar 

  • Enesco HE, McTavish A, Garberi R et al. (1990) Spontaneous activity level and life span in rotifers: lack of support for the rate of living theory. Gerontology 36: 256-261

    PubMed  Google Scholar 

  • Ewbank JJ, Barnes TM, Lakowski B, Lussier M, Bussey H, Hekimi S et al. (1997) Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science 275: 980-983

    PubMed  Google Scholar 

  • Fanestil DD and Barrows CH (1965) Aging in the rotifer. J Gerontol 20: 462-469

    PubMed  Google Scholar 

  • Feder ME, Cartaño NV, Milos L, Krebs RA, Lindquist SL et al. (1996) effect of engineering hsp70 copy number on Hsp70 expression and tolerance of ecologically relevant heat shock in larvae and pupae of Drosophila melanogaster. J Exp Biol 199: 1837-1844

    PubMed  Google Scholar 

  • Fleming JE, Walton JK, Dubitski R, Bensch KG et al. (1988) Aging results in an unusual expression of Drosophila heat shock proteins. Proc Natl Acad Sci USA 85: 4099-4103

    PubMed  Google Scholar 

  • Force AG, Staples T, Soliman S, Arking R et al. (1995) Comparative biochemical and stress analysis of genetically selected Drosophila strains with different longevities. Dev Gen 17: 340-351

    Google Scholar 

  • Fowler K and Partridge L. (1989) A cost of mating in female fruit flies, Nature 338: 760-761

    Google Scholar 

  • Frolkis VV (1982) Aging and Life-Prolonging Processes. Springer-Verlag, New-York.

    Google Scholar 

  • Frolkis VV (1993) Stress-age syndrome. Mech Ageing Dev 69: 93-107

    PubMed  Google Scholar 

  • Giess MC and Planel H (1973) Influence de la radioprotection effectuée à différents stades sur la longévité de Drosophila melanogaster. CR Acad Sci Paris 276: 1029-1032

    Google Scholar 

  • Gilad GM and Gilad VH (1995) Strain, stress, neurodegeneration and longevity. Mech Ageing Dev 78: 75-83

    PubMed  Google Scholar 

  • Goodman R and Blank M (1998) Magnetic field stress induces expression of hsp70. Cell Stress & Chaperones 3: 79-88

    Google Scholar 

  • Goodrick CL (1980) Effects of long-term voluntary wheel exercise on male and female Wistar rats. Gerontology 26: 22-33

    PubMed  Google Scholar 

  • Goodrick CL, Ingram DK, Reynolds MA, Freeman JR, Cider NL et al. (1983) Differential effects of intermittent feeding and voluntary exercise on body weight and lifespan in rats. J Gerontol 38: 36-45

    PubMed  Google Scholar 

  • Gowda A, Yang C, Asimakis GK, Rastegar S, Motamedi M et al. (1998) Heat shock improves recovery and provides protection against global ischemia after hypothermic storage. Ann Thorac Surg 66: 1991-1997

    PubMed  Google Scholar 

  • Gray CC, Amrani M, Yacoub MH et al. (1999) Heat stress proteins and myocardial protection: experimental model or potential clinical tool? Intern J Biochem Cell Biol 31: 559-573

    Google Scholar 

  • Han ES, Levin N, Bengani N, Roberts JL, Suh Y, Karelus K, Nelson JF et al. (1995) Hyperadrenocorticism and food restrictioninduced life extension in the rat: evidence for divergent regulation of pituitary proopiomelanocortin RNA and adrenocorticotropic hormone biosynthesis. J Gerontol 50A: B288-B294

    Google Scholar 

  • Heydari AR, You S, Takahashi R, Gutsmann A, Sarge KD, Richardson A et al. (1996) Effect of caloric restriction on the expression of heat shock protein 70 and the activation of heat shock transcription factor 1. Dev Gen 18: 114-124

    Google Scholar 

  • Hoffmann AA and Parsons PA (1989) Selection for increased desiccation resistance in Drosophila melanogaster: additive genetic control and correlated responses for other stresses. Genetics 122: 837-845

    PubMed  Google Scholar 

  • Hoffmann AA and Parsons PA (1991) Evolutionary Genetics and Environmental Stress. Oxford University Press, Oxford

    Google Scholar 

  • Holloszy JO (1993) Exercise increases average longevity of female rats despite increased food intake and no growth retardation. J Gerontol 48: B97-B100

    PubMed  Google Scholar 

  • Holloszy JO (1997) Mortality rate and longevity of food-restricted exercising male rats: a reevaluation. J Appl Physiol 82: 399-403

    PubMed  Google Scholar 

  • Holloszy JO and Smith EK (1986) Longevity of cold-exposed rats: a reevaluation of the 'rate of living theory'. J Appl Physiol 61: 1656-1660

    PubMed  Google Scholar 

  • Holloszy JO, Smith EK, Vining M, Adams S et al. (1985) Effect of voluntary exercise on longevity of rats. J Appl Physiol 59: 826-831

    PubMed  Google Scholar 

  • Isosaki M and Nakashima T (1998) Psychological stress induces heat shock protein 70 expression in rat aorta. Jpn J Pharmacol 76: 305-308

    PubMed  Google Scholar 

  • Johnson TE, Lithgow GJ, Murakami S et al. (1996) Hypothesis: interventions that increase the response to stress offer the potential for effective life prolongation and increased health. J Gerontol 51A: B392-B395

    Google Scholar 

  • Khazaeli AA, Xiu L, Curtsinger JWet al. (1995) Stress experiments as a means of investigating age-specific mortality in Drosophila melanogaster. Exp Gerontol 30: 177-184

    PubMed  Google Scholar 

  • Khazaeli AA, Tatar M, Pletcher SD, Curtsinger JW et al. (1997) Heat-induced longevity extension in Drosophila. I. Heat treatment, mortality, and thermotolerance. J Gerontol 52A: B48-B52

    Google Scholar 

  • Kirkwood TBL (1993) The disposable soma theory: evidence and implications. Neth J Zool 43: 359-363

    Google Scholar 

  • Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6: 413-429

    PubMed  Google Scholar 

  • Krebs RA and Loeschcke V (1994) Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster. J Evol Biol 7: 39-49

    Google Scholar 

  • Krebs RA and Feder ME (1997a) Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress & Chaperones 2: 60-71

    Google Scholar 

  • Krebs RA and Feder ME (1997b) Natural variation in the expression of the heat-shock protein HSP70 in a population of Drosophila melanogaster and its correlation with tolerance of ecologically relevant thermal stress. Evolution 51: 173-179

    Google Scholar 

  • Kregel KC and Moseley PL (1996) Differential effects of exercise and heat stress on liver hsp70 accumulation with aging. J Appl Physiol 80: 547-551

    PubMed  Google Scholar 

  • Lakowski B and Hekimi S (1996) Determination of life-span in Caenorhabditis elegans by four cloch genes. Science 272: 1010-1013

    PubMed  Google Scholar 

  • Lakowski B and Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95: 13091-13096

    Google Scholar 

  • Lamb MJ (1964) The effects of radiation on the longevity of female Drosophila subobscura. J Ins Physiol 10: 487-497

    Google Scholar 

  • Lamb MJ and McDonald RP (1973) Heat tolerance changes with age in normal and irradiated Drosophila melanogaster. Exp Gerontol 8: 207-217

    PubMed  Google Scholar 

  • Larsen PL, Albert PS, Riddle DL et al. (1995) Genes that regulate development and longevity in Caenorhabditis elegans. Genetics 139: 1567-1583

    PubMed  Google Scholar 

  • Le Bourg E (1987) The rate of living theory. Spontaneous locomotor activity, aging and longevity in Drosophila melanogaster. Exp Gerontol 22: 359-369

    PubMed  Google Scholar 

  • Le Bourg E and Médioni J (1991) Food restriction and longevity in Drosophila melanogaster. Age Nutr 2: 90-94

    Google Scholar 

  • Le Bourg E and Minois N (1996) Failure to confirm increased longevity in Drosophila melanogaster submitted to a food restriction procedure. J Gerontol 51A: B280-B283

    Google Scholar 

  • Le Bourg E and Minois N (1997) Increased longevity and resistance to heat shock in Drosophila melanogaster flies exposed to hypergravity. CR Acad Sci Paris 320: 215-221

    Google Scholar 

  • Le Bourg E and Minois N (1999) A mild stress, hypergravity exposure, postpones behavioral aging in Drosophila melanogaster. Exp Gerontol 34: 157-172

    PubMed  Google Scholar 

  • Le Bourg E, Lints FA, Fresquet N, Bullens P et al. (1993) Hypergravity, aging and longevity in Drosophila melanogaster. Comp Biochem Physiol 105A: 389-396

    Google Scholar 

  • Lin YJ, Seroude L, Benzer S et al. (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282: 943-946

    Google Scholar 

  • Lints FA, Bullens P, Le Bourg E et al. (1993) Hypergravity and aging in Drosophila melanogaster 7: new longevity data. Exp Gerontol 28: 611-615

    PubMed  Google Scholar 

  • Lithgow GJ and Kirkwood TBL (1996) Mechanisms and evolution of aging. Science 273: 80

    Google Scholar 

  • Lithgow GJ, White TM, Hinerfeld DA, Johnson TE et al. (1994) Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J Gerontol 49: B270-B276

    PubMed  Google Scholar 

  • Lithgow GJ, White TM, Melov S, Johnson TE et al. (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 92: 7540-7544

    PubMed  Google Scholar 

  • Liu AYC, Lee YK, Manalo D, Huang LE et al. (1996) Attenuated heat shock transcriptional response in aging: molecular mechanism and implication in the biology of aging. In: Feige U, Morimoto RI, Yahara I, Polla B et al. (eds) Stress-Inducible Cellular Responses, pp 39-408. Birkhäuser Verlag, Basel

    Google Scholar 

  • Luckinbill LS (1998) Selection for longevity confers resistance to low-temperature stress in Drosophila melanogaster. J Gerontol 53A: B147-B153

    Google Scholar 

  • Lundenberg T, Kohler R, Bucinskaite V, Eriksson SV et al. (1998) Physical exercise increases survival after an experimental myocardial infarction in rats. Cardiology 90: 28-31

    PubMed  Google Scholar 

  • Martínez DE (1996) Rejuvenation of the disposable soma: repeated injury extends lifespan in an asexual annelid. Exp Gerontol 31: 699-704

    PubMed  Google Scholar 

  • Masoro EJ (1995) Dietary restriction. Exp Gerontol 30: 291-298

    PubMed  Google Scholar 

  • Masoro EJ (1996) The biological mechanism of aging: is it still an enigma? Age 19: 141-145

    Google Scholar 

  • Matz JM, Lavoi KP, Moen RJ, Blake MJ et al. (1996) Cold-induced heat shock protein expression in rat aorta and brown adipose tissue. Physiol Behav 60: 1369-1374

    PubMed  Google Scholar 

  • McCarter RJ, Shimokawa I, Ikeno Y, Higami Y, Hubbard GB, Yu BP, McMahan CA et al. (1997) Physical activity as a factor in the action of dietary restriction on aging: effects in Fischer 344 rats. Aging Clin Exp Res 9: 73-79

    Google Scholar 

  • McCay CM, Crowell MF, Maynard LA et al. (1935) The effect of retarded growth upon the length of life and upon the ultimate body size. J Nutr 10: 63-79

    Google Scholar 

  • Milakofsky L, Harris N, Vogel WH et al. (1996) Effect of repeated stress on a number of plasma amino acids and related compounds in young and old rats. Physiol Behav 60: 969-971

    PubMed  Google Scholar 

  • Minois N and Le Bourg E (1999) Resistance to stress as a function of age in Drosophila melanogaster living in hypergravity. Mech Ageing Dev 109: 53-64

    PubMed  Google Scholar 

  • Minois N, Guinaudy MJ, Payre F, Le Bourg E et al. (1999) HSP70 induction may explain the long-lasting resistance to heat of Drosophila melanogaster having lived in hypergravity. Mech Ageing Dev 109: 65-77

    PubMed  Google Scholar 

  • Mlekusch W, Tillian M, Lamprecht M, Oettl K, Krainz H, Reibnegger G et al. (1998) The life-shortening effect of reduced physical activity is abolished by a fat rich diet. Mech Ageing Dev 105: 61-73

    PubMed  Google Scholar 

  • Mlekusch W, Tillian H, Lamprecht M, Trutnovsky H, Horejsi R, Reibnegger G et al. (1996) The effect of reduced physical activity on longevity of mice. Mech Ageing Dev 88: 159-168

    PubMed  Google Scholar 

  • Moore SA, Lopez A, Richardson A, Pahlavani MA et al. (1998) Effect of age and dietary restriction on expression of heat shock protein 70 in rat alveolar macrophages. Mech Ageing Dev 104: 59-73

    PubMed  Google Scholar 

  • Morimoto RI and Santoro MG (1998) Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nature Biotech 16: 833-838

    Google Scholar 

  • Murakami S and Johnson TE (1996) A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143: 1207-1218

    PubMed  Google Scholar 

  • Murakami S and Johnson TE (1998) Life extension and stress resistance in Caenorhabditis elegans modulated by the tkr-1 gene. Curr Biol 8: 1091-1094

    PubMed  Google Scholar 

  • Nishizawa J, Nakai A, Matsuda K, Komeda M, Ban T, Nagata K et al. (1999) Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation 99: 934-941

    PubMed  Google Scholar 

  • Nuzhdin SV, Pasyukova EG, Dilda CL, Zeng ZB, Mackay TFC et al. (1997) Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc Natl Acad Sci USA 94: 9734-9739

    PubMed  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G et al. (1997) The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389: 994-999

    PubMed  Google Scholar 

  • Oh HJ, Chen X, Subjeck JR et al. (1997) Hsp110 protects heatdenatured proteins and confers cellular thermoresistance. J Biol Chem 272: 31636-31640

    PubMed  Google Scholar 

  • Ordy JM, Samorajski T, Zeman W, Curtis HJ et al. (1967) Interaction effects of environmental stress and deuteron irradiation of the brain on mortality and longevity of C57BL/10 mice. Proc Soc Exp Biol Med 126: 184-190

    Google Scholar 

  • Oyama J. (1982) Metabolic effects of hypergravity on experimental animals. In: Miquel J and Economos AC (eds) Space Gerontology, Vol 2248, pp 37-51. NASA Conference Publication

  • Paffenbarger RS, Hyde RT, Hsieh CC, Wing AL et al. (1986) Physical activity, other life-style patterns, cardiovascular disease and longevity. Acta Med Scand 711: 85-91

    Google Scholar 

  • Paffenbarger RS, Kampert JB, Lee IM, Hyde RT, Leung RW, Wing AL et al. (1994) Changes in physical activity and other lifeway patterns influencing longevity. Med Sci Sports Exerc 26: 857-865

    PubMed  Google Scholar 

  • Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL et al. (1998) Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nature Gen 19: 171-174

    Google Scholar 

  • Pearl R (1928) The Rate of Living. Knopf, London

    Google Scholar 

  • Plumier JCL, Krueger AM, Currie RW, Kontoyiannis D, Kollias G, Pagoulatos GN et al. (1997) Transgenic mice expressing the human inducible hsp70 have hippocampal neurons resistant to ischemic injury. Cell Stress & Chaperones 2: 162-167

    Google Scholar 

  • Przepiorka D and Srivastava PK (1998) Heat shock protein-peptide complexes as immunotherapy for human cancer. Mol Med Today 4: 478-484

    PubMed  Google Scholar 

  • Rao DV, Watson K, Jones GL et al. (1999) Age-related attenuation in the expression of the major heat shock proteins in human peripheral lymphocytes. Mech Ageing Dev 107: 105-118

    PubMed  Google Scholar 

  • Resler AS, Kelly K, Kantor G, Khazaeli AA, Tatar M, Curtsinger JW et al. (1998) Genetic analysis of extended life span in Drosophila melanogaster II. Replication of the backcross test and molecular characterization of the N14 locus. Genetica 104: 33-39

    PubMed  Google Scholar 

  • Reveillaud I, Niedzwiecki A, Bensch KG, Fleming JE et al. (1991) Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance to oxidative stress. Mol Cell Biol 11: 632-640

    PubMed  Google Scholar 

  • Sacher GA (1963) Effects of X-rays on the survival of Drosophila imagoes. Physiol Zool 36: 295-311

    Google Scholar 

  • Sacher GA (1977) Life table prolongation and life prolongation. In: Finch CE and Hayflick L (eds) Handbook of the Biology of Aging, pp 582-638. Van Nostrand Reinhold Company, New York

    Google Scholar 

  • Sanchez Y and Lindquist SL (1990) Hsp104 required for induced thermotolerance. Science 248: 1112-1115

    PubMed  Google Scholar 

  • Selye H (1970) Stress and aging. J Am Geriat Soc 28: 669-680

    Google Scholar 

  • Service PM, Hutchinson EW, MacKinley MD, Rose MR et al. (1985) Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol Zool 58: 380-389

    Google Scholar 

  • Shama S, Lai CY, Antoniazzi JM, Jiang JC, Jazwinski SM et al. (1998) Heat stress-induced life span extension in yeast. Exp Cell Res 245: 379-388

    PubMed  Google Scholar 

  • Shook DR, Brooks A and Johnson TE (1996) Mapping quantitative trait loci affecting life history traits in the nematode Caenorhabditis elegans. Genetics 142: 801-817

    PubMed  Google Scholar 

  • Shpund S and Gershon D (1997) Alterations in the chaperone activity of HSP70 in aging organisms. Arch Gerontol Geriat 24: 125-131

    Google Scholar 

  • Smith-Sonneborn J and Barbee SA (1998) Exercise-induced stress response as an adaptive tolerance strategy. Environ Health Perspect 106 (Suppl 1): 325-330

    Google Scholar 

  • Sohal RS (1986) The rate of living theory: a contemporary interpretation. In: Collatz KG and Sohal RS (eds) Insect Aging, pp 23-44. Springer-Verlag Berlin

    Google Scholar 

  • Sohal RS and Buchan PB (1981) Relationship between physical activity and life span in the adult housefly, Musca domestica. Exp Gerontol 16: 157-162

    PubMed  Google Scholar 

  • Stearns SC (1992) Trade-offs. In: The Evolution of Life-Histories, pp 72-90. Oxford University Press, Oxford

    Google Scholar 

  • Su CY, Chong KY, Chen JX, Ryter S, Khardori R, Lai CC et al. (1999) A physiologically relevant hyperthermia selectively activates constitutive hsp70 in H9c2 cardiac myoblasts and confers oxidative protection. J Mol Cell Cardiol 31: 845-855

    PubMed  Google Scholar 

  • Su CY, Chong KY, Owen OE, Dillmann WH, Chang C, Lai CC et al. (1998) Constitutive and inducible hsp70s are involved in oxidative resistance evoked by heat shock or ethanol. J Mol Cell Cardiol 30: 587-598

    PubMed  Google Scholar 

  • Sun J and Tower J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19: 216-228

    PubMed  Google Scholar 

  • Talan MI and Ingram DK (1986) Effects of voluntary and forced exercise on thermoregulation and survival in aged C57BL/6J mice. Mech Ageing Dev 36: 269-279

    PubMed  Google Scholar 

  • Tamura K, Miyashita M, Iwahashi H et al. (1998) Stress tolerance of pressure-shocked Saccharomyces cerevisiae. Biotech Lett 20: 1167-1169

    Google Scholar 

  • Tatar M and Promislow DEL (1997) Fitness costs of female reproduction. Evolution 51: 1323-1326

    Google Scholar 

  • Tatar M, Khazaeli AA, Curtsinger JW et al. (1997) Chaperoning extended life. Nature 390: 30

    Google Scholar 

  • Theodorakis NG, Drujan D, De Maio A et al. (1999) Thermotolerant cells show an attenuated expression of Hsp70 after heat shock. J Biol Chem 274: 12081-12086

    PubMed  Google Scholar 

  • Van de Klundert FAJM, Van den Ijssel PRLA, Stege GJJ, De Jong WWet al. (1999) Rat hsp20 confers thermoresistance in a clonal survival assay, but fails to protect coexpressed luciferase in chinese hamster ovary cells. Biochem Biophys Res Comm 254: 164-168

    PubMed  Google Scholar 

  • Vanflateren JR and De Vreese A (1995) The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB J 9: 1355-1361

    PubMed  Google Scholar 

  • Verdery RB and Walford RL (1998) Changes in plasma lipids and lipoproteins in humans during a 2-year period of dietary restriction in biosphere 2. Arch Intern Med 158: 900-906

    PubMed  Google Scholar 

  • Verdone-Smith C and Enesco HE (1982) The effect of temperature and of dietary restriction on lifespan and reproduction in the rotifer Asplanchna brightwelli. Exp Gerontol 17: 255-262

    PubMed  Google Scholar 

  • Villeneuve PJ, Morrison HI, Craig CL, Schaubel DE et al. (1998) Physical activity, physical fitness, and risk of dying. Epidemiology 9: 626-631

    PubMed  Google Scholar 

  • Walford RL, Weber L, Panov S et al. (1995) Caloric restriction and aging as viewed from biosphere 2. Receptor 5: 29-33

    PubMed  Google Scholar 

  • Wannamethee SG, Shaper AG, Walker M, Ebrahim S et al. (1998) Lifestyle and 15-year survival free of heart attack, stroke, and diabetes in middle-aged British men. Arch Intern Med 158: 2433-2440

    PubMed  Google Scholar 

  • Welte MA, Tetrault JM, Dellavalle RP, Lindquist SL et al. (1993) A new method for manipulating transgenes: engineering heat tolerance in a complex, multicellular organism. Curr Biol 3: 842-853

    PubMed  Google Scholar 

  • Wong A, Boutis P, Hekimi S et al. (1995) Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139: 1247-1259

    PubMed  Google Scholar 

  • Wong HR, Menendez IY, Ryan MA, Denenberg AG, Wispe JR et al. (1998) Increased expression of heat shock protein-70 protects A549 cells against hyperoxia. Am J Physiol 275: L836-L841

    PubMed  Google Scholar 

  • Woodhead AD (1985) Feral fishes. Interdiscipl Topics Gerontol 21: 22-50

    Google Scholar 

  • Yahav S and Hurwitz S (1996) Induction of thermotolerance in male broiler chickens by temperature conditioning at an early age. Poultry Sci 75: 402-406

    Google Scholar 

  • Yang Y and Wilson DL (1999) Characterization of a life-extending mutation in age-2, a new aging gene in Caenorhabditis elegans. J Gerontol 54A: B137-B142

    Google Scholar 

  • Yenari MA, Fink SL, Sun HH, Chang LK, Patel MK, Kunis DM, Onley D, Ho DY, Sapolsky RM, Steinberg GK et al. (1998) Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann Neurol 44: 584-591

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minois, N. Longevity and aging: beneficial effects ofexposure to mild stress. Biogerontology 1, 15–29 (2000). https://doi.org/10.1023/A:1010085823990

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010085823990

Navigation