We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Particularities of Heat Conduction in Nanostructures

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Heat conduction in nanostructures differs significantly from that in macrostructures because the characteristic length scales associated with heat carriers, i.e., the mean free path and the wavelength, are comparable to the characteristic length of nanostructures. In this communication, particularities associated with phonon heat conduction in nanostructures, the applicability of the Fourier law, and the implications of nanoscale heat transfer effects on nanotechnology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Arutyunyan L.I., V.N. Bogomolov, N.F. Kartenko, D.A. Kurdyukov, V.V. Popov, A.V. Prokof'ev, I.A. Smirnov & N.V. Sharenkova, 1997. Thermal conductivity of a new type of regular-structure nanocomposites: PbSe in opal pores. Phys. Solid State 39, 510-514.

    Google Scholar 

  • Chen G., 1996. Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. J. Heat Transf. 118, 539-545.

    Google Scholar 

  • Chen G., 1997. Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures. J. HeatTransf. 119, 220-229.

    Google Scholar 

  • Chen G., 2000. Phonon heat conduction in superlattices and nanostructures. In: Semimetals and Semiconductors (in press).

  • Chung J.D. & M. Kaviany, 2000. Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon. Int. J. Heat and Mass Transf. 42, 521-538.

    Google Scholar 

  • DiSalvo F.J., 1999. Thermoelectric cooling and power generation. Science 285, 703-706.

    Google Scholar 

  • Dresselhaus M.S., G. Dresselhaus, X. Sun, Z. Zhang, S.B. Cronin, T. Koga, J.Y. Ying & G. Chen, 1999. The promise of low-dimensional thermoelectric materials. Microscale Thermophysical Eng. 3, 89-100.

    Google Scholar 

  • Gesele G., J. Linsmeier, V. Drach, J. Fricke & R. Arens-Fischer, 1997. Temperature-dependent thermal conductivity of porous silicon. J. Phys. D: Appl. Phys. 30, 2911-2916.

    Google Scholar 

  • Goldsmid H.J., 1964. Thermoelectric Refrigeration. Plenum Press, New York.

    Google Scholar 

  • Goodson K.E. & Y.S. Ju, 1999. Heat conduction in novel electronic films. Ann. Rev. Mat. 29, 261-293.

    Google Scholar 

  • Hone J., M. Whitney, C. Piskoti & A. Zettl, 1999. Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, R2514-R2516.

    Google Scholar 

  • Ju Y.S. & K.E. Goodson, 1999. Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74, 3005-3007.

    Google Scholar 

  • Potts A., M.J. Kelly, D.G. Hasko, C.G. Smith, D.B. Hasko, J.R.A. Cleaver, H. Ahmed, D.C. Peacock, D.A. Ritchie, J.E.F. Frost & G.A.C. Jones, 1991. Thermal transport in freestanding semiconductor fine wires. Superlattices & Microstructures 9, 315-318.

    Google Scholar 

  • Roukes M.L., 1999. Presentation at DARPA Workshop on Applied Physics of Nanostructures and Nanomaterials, 16-17 December, Arlington, Virginia.

  • Seyler J. & M.N. Wybourne, 1992. Acoustic waveguide modes observed in electrically heated metal wires. Phys. Rev. Lett. 9, 1427-1430.

    Google Scholar 

  • Tien C.L. & G. Chen, 1994. Challenges in microscale conductive and radiative heat transfer. J. Heat Transf. 116, 799-807.

    Google Scholar 

  • Tien C.L. 1997. Editor-in-Chief, Microscale Thermophysical Engineering, Vol. 1.

  • Tighe T.S., J.M. Worlock & M.L. Roukes, 1997. Direct thermal conductance measurements on suspended monocrystalline nanostructures. Appl. Phys. Lett. 70, 2687-2689.

    Google Scholar 

  • Volz S.G. & G. Chen, 1999. Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl. Phys. Lett. 75, 2056-2058.

    Google Scholar 

  • Walkauskas S.G., D. Broido, K. Kempa & T.L. Reinecke, 1999. Lattice thermal conductivity of wires. J. Appl. Phys. 85, 2579-5282.

    Google Scholar 

  • Yao T., 1987. Thermal properties of AlAs/GaAs superlattices. Appl. Phys. Lett. 51, 1798-1800.

    Google Scholar 

  • Yi W., L. Lu, D.L. Zhang, Z.W. Pan & S.S. Xie, 1999. Linear specific heat of carbon nanotubes. Phys. Rev. B 59, R9015-R9018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G. Particularities of Heat Conduction in Nanostructures. Journal of Nanoparticle Research 2, 199–204 (2000). https://doi.org/10.1023/A:1010003718481

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010003718481

Navigation