Skip to main content
Log in

Microfabricated Biocapsules Provide Short-Term Immunoisolation of Insulinoma Xenografts

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This study examines the viability and functionality of two insulinoma cell lines, RIN (1048) and βTC6F7, encapsulated within microfabricated biocapsules. Surface and bulk micromachining are integrated in the biocapsule fabrication process, resulting in a diffusion membrane with uniform pore size distribution as well as mechanical and chemical stability, surrounded by an anisotropically-etched silicon wafer, which serves as the encapsulation cavity. Insulinoma cells (4500 cells/biocapsule) were enclosed within these microfabricated biocapsules and subjected to a static incubation study after either implantation in BALB-C mice or incubation in vitro. Examination of retrieved microfabricated biocapsules revealed an insulin stimulatory index of approximately 1.5 for encapsulated RIN cells and 3.6 for encapsulated βTC6F7 cells for biocapsules with 18 nm pore sized microfabricated membranes, similar to indices of biocapsules incubated in vitro. There was an 80% decrease in cell stimulatory response between in vitro and in vivo 66 nm-biocapsules as compared to 20% for 18 nm-biocapsules, indicating that the immunoisolatory effectiveness depends greatly on achieving uniform pore sizes in the size range of 18 nm or smaller. The present study demonstrates the feasibility of using microfabricated biocapsules for the immunoisolation of insulinoma cells lines. The microfabricated biocapsule may serve as an alternative to conventional polymeric based biocapsules for possible use as in vivo insulin secreting bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.P. Lanza and W.L. Chick, Scientific American Science & Medicine 2(4), 16–25 (1995).

    Google Scholar 

  2. C.K. Colton, Cell Transplantation 4(4), 415–436 (1995).

    Article  MathSciNet  Google Scholar 

  3. W.H. Chu, T. Huen, J. Tu, and M. Ferrari, Silicon-micromachined Direct-pore Filters for Ultrafiltration. In: P.L. Gourley, ed. Micro and Nanofabricated Electro-Optical-Mechanical Systems for Biomedical and Environmental Application, SPIE 2978 111–122 (1997).

  4. T.A. Desai, W.H. Chu, J. Tu, P. Shrewsbury, and M. Ferrari, Microfabricated Biocapsules for Cell Xenografts: A Review. In: P.L. Gourley, ed. Micro and Nanofabricated Electro-Optical-Mechanical Systems for Biomedical and Environmental Application. SPIE 2978 216–226 (1997).

  5. T.A. Desai, W.H. Chu, J.K. Tu, G.M. Beattie, A. Hayek, and M. Ferrari, Biotechnology and Bioengineering 57(1), 118–120 (1998).

    Article  Google Scholar 

  6. T.A. Desai, M. Ferrari, and G. Mazzoni, Silicon Microimplants: Fabrication and Biocompatibility, Materials and Design Technology. Ed. T. Kozik ASME: 97–103. (1995).

  7. J.P. Benson, K.K. Papas, I. Constantinidis, and A. Sambanis, Cell Transplantation 6(4), 395–402 (1997).

    Article  Google Scholar 

  8. H. Hayashi, K. Inoue, T. Aung, T. Tun, G. Yuanjun, W. Wenjing, S. Shinohara, H. Kaji, R. Doi, and H. Setoyama, et al. Cell Transplantation 5(5 Suppl 1), S65–9 (1996).

    Article  Google Scholar 

  9. H. Ohgawara, J. Miyazaki, Y. Nakagawa, S. Sato, S. Karibe, and T. Akaike, Cell Transplantation 5(5 Suppl 1), S71–3 (1996).

    Article  Google Scholar 

  10. D. Hansford, T.A. Desai, and M. Ferrari, “Biocompatible Silicon Wafer Bonding for Biomedical Microdevices,” In: P.L. Gourley, ed. Micro and Nanofabricated Electro-Optical-Mechanical Systems for Biomedical and Environmental Applications, SPIE, 164–168 (1998).

  11. S.A. Clark, C. Quaade, H. Constandy, P. Hansen, P. Halban, S. Ferber, C.B. Newgard, and K. Normington, Diabetes 46(6), 958–967 (1997).

    Google Scholar 

  12. S. Efrat, M. Leiser, M. Surana, M. Tal, D. Fusco-Demane, and N. Fleischer, Diabetes 42(6), 901–907 (1993).

    Google Scholar 

  13. D. Knaack, D.M. Fiore, M. Surana, M. Leiser, M. Laurance, D. Fusco-DeMane, O.D. Hegre, N. Fleischer, and S. Efrat, Diabetes 43(12), 1413–1417 (1994).

    Google Scholar 

  14. P.E. Lacy and M. Kostianovsky, Diabetes 16, 35–39 (1967).

    Google Scholar 

  15. C.K. Colton and E. Avgoustiniatos, Transactions of the ASME 113, 152–170 (1991).

    Google Scholar 

  16. D.L. Eizirik, L. Jansson, M. Flodstrom, C. Hellerstrom, and A. Andersson, Journal of Clinical Endocrinology and Metabolism 82(8), 2660–3 (1997).

    Article  Google Scholar 

  17. T. Wasada, K. Aoki, T. Babazono, H. Kuroki, H. Arii, A. Saeki, and Y. Omori, Endocrine Journal 42(6), 747–752 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, T.A., Chu, W.H., Rasi, G. et al. Microfabricated Biocapsules Provide Short-Term Immunoisolation of Insulinoma Xenografts. Biomedical Microdevices 1, 131–138 (1999). https://doi.org/10.1023/A:1009948524686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009948524686

Navigation