Skip to main content
Log in

Characterization of Methane Emissions from Rice Fields in Asia. III. Mitigation Options and Future Research Needs

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Methane (CH4) emissions from rice fields were determined using automated measurement systems in China, India, Indonesia, Thailand, and the Philippines. Mitigation options were assessed separately for different baseline practices of irrigated rice, rainfed, and deepwater rice. Irrigated rice is the largest source of CH4 and also offers the most options to modify crop management for reducing these emissions. Optimizing irrigation patterns by additional drainage periods in the field or an early timing of midseason drainage accounted for 7–80% of CH4 emissions of the respective baseline practice. In baseline practices with high organic amendments, use of compost (58–63%), biogas residues (10–16%), and direct wet seeding (16–22%) should be considered mitigation options. In baseline practices using prilled urea as sole N source, use of ammonium sulfate could reduce CH4 emission by 10–67%. In all rice ecosystems, CH4 emissions can be reduced by fallow incorporation (11%) and mulching (11%) of rice straw as well as addition of phosphogypsum (9–73%). However, in rainfed and deepwater rice, mitigation options are very limited in both number and potential gains. The assessment of these crop management options includes their total factor productivity and possible adverse effects. Due to higher nitrous oxide (N2O) emissions, changes in water regime are only recommended for rice systems with high baseline emissions of CH4. Key objectives of future research are identifying and characterizing high-emitting rice systems, developing site-specific technology packages, ascertaining synergies with productivity, and accounting for N2O emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abao EB, Bronson KF, Wassmann R & Singh U (2000) Simultaneous records of methane and nitrous oxide emissions in rice-based cropping systems under rainfed conditions. Nutr Cycling Agroecosyst, this issue

  • Adhya TK Bharati K, Mohanty SR, Mishra SR, Ramakrishnan B, Rao VR, Sethunathan N & Wassmann R (2000) Methane emissions from rice fields at Cuttack (India) Nutr Cycling Agroecosyst, this issue

  • Becker T (1993) Asia's food challenge: to produce more with less. Dev Coop 6:15–16

    Google Scholar 

  • Blake RO (1992) Sustainable and increased food production. Agric Syst 40:7–19

    Google Scholar 

  • Bronson KF, Neue HU, Singh U & Abao Jr, E (1997a) Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: I. Residue, Nitrogen, and water management. Soil Soc Am J 61:981–987

    Google Scholar 

  • Bronson KF, Neue H, Singh U & Abao Jr, E (1997b) Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: II. Fallow period emissions Soil Sci Soc Am J 61:988–993

    Google Scholar 

  • Butterbach-Bahl K, Papen H & Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ 20: 1175–1183

    Google Scholar 

  • Cai ZC, Xing GX, Shen GY, Xu H, Yan XY, Tsuruta, H, Yagi K & Minami K (1999) Measurements of CH4 and N2O emissions from rice paddies in Fengqiu, China. Soil Sci Plant Nutr 45:1–13

    Google Scholar 

  • Cai ZC, Xing GX, Yan XY, Xu H, Tsuruta H, Yagi K, & Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 196:7–14

    Google Scholar 

  • Chareonsilp N, Buddhaboon C, Promnart P, Wassmann R, Lantin RS & Buendia LV (2000) Methane emission from deepwater rice fields Nutr Cycling Agroecosyst, this issue

  • Corton TM, Bajita J, Grospe F, Pamplona R, Wassmann R & Lantin RS (2000) Methane emission from irrigated and intensively managed rice fields in Central Luzon (Philippines). Nutr Cycling Agroecosyst, this issue

  • De Datta SK & Nantasomsaran P (1991) Status and prospects of direct seeded flooded rice in tropical Asia. In: Direct seeded flooded rice in the tropics. pp 1–16

  • Dawe D & Dobermann A (1999) Defining productivity and yield. International Rice Research Institute Manila, Philippines, 13 p

    Google Scholar 

  • Didiek SB (1998) Alternative technique of water saving through intermittent irrigation system for rice crop. Water and Land Resources Development and Management for Sustainable Use. Vol. II-A. Indonesian National Committee on Irrigation and Drainage (INACID) A-31, 8 p

  • Dixon RK, Sathaye JA, Meyers SP, Masera OR, Makarov AA, Toure S, Makundi W & Wiel S (1996) Greenhouse gas mitigation strategies: preliminary results from the U.S. country studies program. Ambio 25:26–32

    Google Scholar 

  • FADINAP–Fertilizer Advisory Development Information Network for Asia and the Pacific (1999) Fertilizer statistics. Bangkok, Thailand

  • Freney JR (1997) Strategies to reduce gaseous emissions of nitrogen from irrigated agriculture. Nutr Cycling Agroecosyst 48:155–160

    Google Scholar 

  • IPCC – Intergovernmental Panel on Climate Change (1996) Climate Change 1995. The Science of Climate Change. Cambridge University Press Cambridge (UK), 572 p

    Google Scholar 

  • IRRI – International Rice Research Institute (1993) IRRI Rice Almanac, Manila, Philippines, 142 p

  • Jain MC, Kumar K, Wassmann R, Mitra S, Singh SD, Singh JP, Singh R, Yadav AK & Gupta S (2000) Methane emissions from irrigated rice fields in northern India (New Delhi). Nutr Cycling Agroecosyst, this issue

  • Knox J, Matthews RB & Wassmann R( 2000) Using a crop/ soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. III. Databases. Nutr Cycling Agroecosyst, this issue

  • Lindau CW, Bollich PK, DeLaune RD, Mosier AR & Bronson KF (1993) Methane mitigation in flooded Louisiana rice fields. Biol Fertil Soils 15:174–178

    Google Scholar 

  • Lu Y, Wassmann R, Neue HU & Huang C (1999) Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants. Biogeochemistry (in press)

  • Lu WF, Chen W, Duan BW, Guo WM, Lu Y, Lantin RS, Wassmann R & Neue HU (2000) Methane emission and mitigation options in irrigated rice fields in Southeast China. Nutr Cycling Agroecosyst, this issue

  • Minami K & Neue HU (1994) Rice paddies as a methane source. Climatic Change 27:13–26

    Google Scholar 

  • Minami K (1997) Atmospheric methane and nitrous oxide: sources, sinks and strategies for reducing agricultural emissions. Nutr Cycling Agroecosyst 49:203–211

    Google Scholar 

  • Miura Y & Kanno T (1997) Emissions of trace gases (CO2, CO, CH4, and N2O) resulting from rice straw burning. Soil Sci Plant Nutr 43:849–854

    Google Scholar 

  • Neue HU, Wassmann R & Lantin RS (1995) Mitigation options for methane emissions from rice fields. Climate Change and Rice. Springer-Verlag, Berlin, pp 136–144

    Google Scholar 

  • Neue HU & Sass RL (1998) The budget of methane from rice fields. IGACtivities 12:3–11

    Google Scholar 

  • Ranganathan R, Neue HU & Pingali PL (1995) Global climate change: role of rice in methane emissions and prospects for mitigation. Climate Change and Rice. Springer-Verlag, Berlin, pp 122–135

    Google Scholar 

  • Rennenberg H, Wassmann R, Papen H & Seiler W (1992) Trace gas emission in rice cultivation. Ecol Bull 42:164–173

    Google Scholar 

  • Sass RL & Fisher FM (1995) Methane emissions from Texas rice fields: a five-year study. In: S Peng, KT Ingram, HU Neue, L Ziska (eds) Climate Change and Rice, pp 46–59, Springer-Verlag, Berlin

    Google Scholar 

  • Schlesinger WH (1999) Carbon sequestration in soils. Science 284:2095

    Google Scholar 

  • Setyanto P, Makarim AK, Fagi AM, Wassmann R & Buendia LV (2000) Crop management affecting methane emissions from irrigated and rainfed rice in Central Java (Indonesia) Nutr Cycling Agroecosys, this issue

  • Shin YK, Yun SH, Park ME & Lee BL (1996) Mitigation options for methane emission from rice fields in Korea. Ambio 25:289–291

    Google Scholar 

  • Smith KA (1999) After the Kyoto Protocol: can soil scientists make a useful contribution. Soil Use Manage 15: 71–75

    Google Scholar 

  • Smith KA, McTaggart IP & Tsuruta H (1997) Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Use Manage 13:296–304

    Google Scholar 

  • Tuong TP, Cabangon, RJ & Wopereis M C S (1996) Quantifying flow processes during land soaking of cracked rice soils. Soil Sci Soc Am J 60:872–879

    Google Scholar 

  • Wang ZY, Xu YC, Li Z, Guo YX, Wassmann R, Neue HU, Lantin RS, Buendia LV, Ding YP & Wang ZZ (2000) Methane Emissions from irrigated rice fields in northern China (Beijing). Nutr Cycling Agroecosyst, this issue

  • Wassmann R, Wang MX, Shangguan XJ, Xie XL, Shen RX, Papen H, Rennenberg H & Seiler W (1993) First records of a field experiment on fertilizer effects on methane emission from rice fields in Hunan Province (PR China). Geophys Res Lett 20:2071–2074

    Google Scholar 

  • Wassmann R, Buendia LV, Lantin RS, Bueno CS, Lubigan LA, Umali A, Nocon N, Javellana AM & Neue HU (2000 a) Mechanisms of crop management impact on methane emissions from rice fields in Los Baños, Philippines. Nutr. Cycling Agroecosys, this issue

  • Wassmann R, Neue HU, Lantin RS, Buendia LV & Rennenberg H (2000 b) Characterization of methane emissions from rice fields in Asia. 1. Comparison among field sites in five countries. Nutr Cycling Agroecosyst, this issue

  • Wassmann R, Neue HU, Lantin RS, Makarim K, Chareonsilp N, Buendia LV & Rennenberg H (2000c) Characterization of methane emissions from rice fields in Asia. 2. Differences among irrigated, rainfed and deepwater ecosystems. Nutr. Cycling Agroecosyst, this issue

  • Yagi K, Tsuruta H & Minami K (1997) Possible options for mitigating methane emission from rice cultivation. Nutr Cycling Agroecosyst 213–220

  • Yoshida S (1981). Fundamentals of rice crop science. International Rice Research Institute, Manila, Philippines, 269 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wassmann, R., Lantin, R.S., Neue, H.U. et al. Characterization of Methane Emissions from Rice Fields in Asia. III. Mitigation Options and Future Research Needs. Nutrient Cycling in Agroecosystems 58, 23–36 (2000). https://doi.org/10.1023/A:1009874014903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009874014903

Navigation