Skip to main content
Log in

Cardiomyocyte Apoptosis in Experimental Health Failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure is characterized by progressive worsening of left ventricular (LV) function over time. The mechanism(s) responsible for this hemodynamic deterioration are not known. It is often assumed, but by no means established, that progressive LV dysfunction results largely from ongoing loss of functional cardiac units. If ongoing myocyte loss occurs during the course of evolving heart failure and can indeed account for the progressive deterioration of LV dysfunction, then the identification of factors responsible for this loss of muscle mass can potentially lead to novel therapeutic modalities aimed at preventing the transition toward intractable heart failure. Recent studies in experimental animals have shown that cardiac myocyte loss through apoptosis, or programmed cell death, occurs 1) following myocardial infarction, 2) in the presence of cardiac hypertrophy, 3) in the aging heart, and 4) in the setting of chronic heart failure. The observation of myocyte apoptosis in experimental animal models of heart failure has since been confirmed in the failed human heart. Considerable work has also been accomplished, and credible concepts advanced, in an attempt to uncover the physiological and molecular triggers of myocyte apoptosis in heart failure. While, at present, one can comfortably accept the existence of the phenomenon of myocyte apoptosis in the failing heart, two integral questions remain essentially unanswered. First, what pathophysiological factors(s), inherent to heart failure, trigger myocyte apoptosis? Second, how important is myocyte apoptosis in the progression of LV dysfunction and the transition to overt failure? The present article will summarize our current knowledge of myocyte apoptosis based largely on data available from animal models of myocardial infarction, hypertrophy, and failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anversa P, Olivetti G, Capasso JM. Cellular basis of ventricular remodeling after myocardial infarction. Am J Cardiol 1991;68: 7D–16D.

    Google Scholar 

  2. Pfeffer MA, Lamas GA, Vaughan DE, Parisi AF, Braunwald E. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N Engl J Med 1988;319: 80–86.

    Google Scholar 

  3. Levine TB, Francis GS, Goldsmith SR, Simon AB, Cohn JN. Activity of the sympathetic nervous system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am J Cardiol 1982;49:1659–1666.

    Google Scholar 

  4. Curtiss C, Cohn JN, Vrobel T, Franciosa JA. Role of the renin–angiotensin system in the systemic vasoconstriction of chronic congestive heart failure. Circulation 1978;58: 763–770.

    Google Scholar 

  5. Sabbah HN, Sharov VG, Riddle JM, Kono T, Lesch M, Goldstein S. Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 1992;24: 1333–1347.

    Google Scholar 

  6. Sharov VG, Sabbah HN, Shimoyama H, Ali AS, Levine TB, Lesch M, Goldstein S. Abnormalities of contractile structures in viable myocytes of the failing heart. Int J Cardiol 1994;43: 287–297.

    Google Scholar 

  7. Schaper J, Hein S. The structural correlate of reduced cardiac function in human dilated cardiomyopathy. Heart Failure 1993;9: 95–111.

    Google Scholar 

  8. Sabbah HN, Sharov VG, Lesch M, Goldstein S. Progression of heart failure: a role for interstitial fibrosis. Mol Cell Biochem 1995;147:29–34.

    Google Scholar 

  9. Perennec J, Hatt PY. Myocardial morphology in cardiac hypertrophy and failure: electron microscopy in man. In Swynghedauw B (ed.), Cardiac Hypertrophy and Failure. London: John Libbey Eurotext, 1988, pp 267–276.

    Google Scholar 

  10. Baandrup U, Florio RA, Roters FF, Olsen EGJ. Electron microscopic investigation of endomyocardial biopsy samples in hypertrophy and cardiomyopathy. A semiquantitative study in 48 patients. Circulation 1981;63: 1289–1297.

    Google Scholar 

  11. Sharov VG, Sabbah HN, Shimoyama H, Goussev A, Lesch M, Goldstein S. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 1996;148:141–149.

    Google Scholar 

  12. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996;335: 1182–1189.

    Google Scholar 

  13. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami A, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med 1997;336: 1131–1141.

    Google Scholar 

  14. Kerr JFR, Wylle AH, Curie AR. Apoptosis: a basic biological phenomenon with widespread implication in tissue kinetics. Br J Cancer 1972;26:239–257.

    Google Scholar 

  15. Barr PJ, Tomei LD. Apoptosis and its role in human disease. Biotechnology 1994;12:487–493.

    Google Scholar 

  16. Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res 1990;67:871–885.

    Google Scholar 

  17. Reiss K, Kajstura J, Capasso JM, Matino TA, Anversa P. Impairment of myocyte contractility following coronary artery narrowing is associated with activation of the myocyte IGF-1 autocrine system, enhanced expression of late growth related to genes, DNA-synthesis and myocyte nuclear mitotic division in rats. Exp Cell Res 1993;207: 348–360.

    Google Scholar 

  18. Anversa P, Fitzpatrick D, Argani S, Capasso JM. Myocyte mitotic division in the aging mammalian rat heart. Circ Res 1991;69:1159–1164.

    Google Scholar 

  19. Liu Y, Cigola E, Cheng W, Kajstura J, Olivetti G, Hintze TH, Anversa P. Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest 1995;73:771–787.

    Google Scholar 

  20. Wyllie AH, Kerr JFR, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol 1980;68:251–306.

    Google Scholar 

  21. Cohen JJ. Programmed cell death in the immune system. Adv Immunol 1991;50:55–85.

    Google Scholar 

  22. Ellis RE, Yuan J, Horvitz HR. Mechanisms and functions of cell death. Annu Rev Cell Biol 1991;7:663–698.

    Google Scholar 

  23. Reimer KA, Jennings RB. Ion and water shifts, Cellular. In Cowley RA, Trump BF (eds.), Pathophysiology of Shock, Anoxia, and Ischemia. Baltimore/London: Williams and Wilkins, 1992, pp 132–146.

    Google Scholar 

  24. Trump BF, Berezesky IK, Cowley RA. The cellular and subcellular characteristics of acute and chronic injury with emphasis on the role of calcium. In Cowley RA, Trump BF (eds.), Pathophysiology of Shock, Anoxia, and Ischemia. Baltimore/London: Williams and Wilkins, 1982, pp 6–46.

    Google Scholar 

  25. Fleckenstein A, Janke J, Doring HJ, Pachinger O. Ca11 overload as the determinant factor in the production of catecholamine-induced myocardial lesions. Recent Adv Stud Cardiac Struct Metab 1973;2:445–466.

    Google Scholar 

  26. Jennings RB, Sommers HM, Kaltenbach JP, West JJ. Electrolyte alterations in acute myocardial ischemic injury. Circ Res 1964;14:260–269.

    Google Scholar 

  27. Reimer KA, Jennings RB, Hill ML. Total ischemia in dog hearts in vitro. II. High energy phosphate depletion and associated defects in energy metabolism, cell volume regulation, and sarcolemmal integrity. Circ Res 1981;49:901–911.

    Google Scholar 

  28. Kerr JFR. A histochemical study of hypertrophy and ischemic injury of rat liver with special reference to changes in lysosomes. J Pathol Bacteriol 1965;90:419–455.

    Google Scholar 

  29. Kerr JFR. Shrinkage necrosis: a distinct mode of cellular death. J Pathol 1971;105:13–20.

    Google Scholar 

  30. Savill J. Apoptosis in disease. Eur J Clin Invest 1994; 24:715–723.

    Google Scholar 

  31. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456–1462.

    Google Scholar 

  32. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980;284:555–556.

    Google Scholar 

  33. Arends MJ, Morris RG Wyllie AH. Apoptosis: the role of the endonuclease. Am J Pathol 1990;136:593–608.

    Google Scholar 

  34. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P. Apoptotic and necrotic myocyte cell death are independent contributing variables of infarct size in rats. Lab Invest 1996;74:86–107.

    Google Scholar 

  35. Fliss H, Gattinger D. Apoptosis in ischemic and reperfused myocardium. Circ Res 1996;79:949–956.

    Google Scholar 

  36. Cheng W, Kajstura J, Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 1996;226: 316–327.

    Google Scholar 

  37. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki L-M. Apoptosis in human acute myocardial infarction. Circulation 1997;95:320–323.

    Google Scholar 

  38. Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E, Gambert SR, Cigola E, Anversa P. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 1994;28:2005–2016.

    Google Scholar 

  39. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994;94:1621–1628.

    Google Scholar 

  40. Ravali S, Kai B, Kohmoto S, Szabolcs M, DeRosa CM, Uzun G, Packer M, Burkhoff D. Apoptosis contributes to myocyte loss late after myocardial infarction in rats (abstract). Circulation 1996;94:I–32.

    Google Scholar 

  41. Sharov VG, Goussev A, Higgins RSD, Silverman N, Lesch M, Goldstein S, Sabbah HN. Higher incidence of cardiocyte apoptosis in failed explanted hearts of patients with ischemic versus idiopathic dilated cardiomyopathy (abstract). Circulation 1997;96:I–17.

    Google Scholar 

  42. Capasso JM, Plackai T, Olivetti G, Anversa P. Left ventricular failure induced by long-term hypertension in rats. Circ Res 1990;66:1400–1412.

    Google Scholar 

  43. Tomanek RJ, Aydelotte MR. Late onset renal hypertension in old rats alters left ventricular structure and function. Am J Physiol 1992;262:H531–H538.

    Google Scholar 

  44. Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze TH, Olivetti G, Anversa P. Stretch-induced programmed myocyte cell death. J Clin Invest 1995;96: 2247–2259.

    Google Scholar 

  45. Teiger E, Dam T-V, Richard L, Wisnewsky C, Tea B-S, Gaboury L, Tremblay J, Schwartz K, Hamet P. Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest 1996;97:2891–2897.

    Google Scholar 

  46. Li Z, Bing OHL, Long X, Robinson KG, Lakatta EG. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 1997;272:H2313–H2319.

    Google Scholar 

  47. Sabbah HN, Stein PD, Kono T, Gheorghiade M, Levine TB, Jafri S, Hawkins ET, Goldstein S. A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol 1991;260:H1379–H1384.

    Google Scholar 

  48. Sabbah HN, Sharov VG, Goussev A, Tanimura M, Mishima T, Lesch M, Goldstein S. Evidence for ongoing loss of cardiomyocytes in dogs with progressive left ventricular dysfunction and failure. Circulation 1997;96:I–754.

    Google Scholar 

  49. Sharov VG, Sabbah HN, Ali AS, Shimoyama H, Lesch M, Goldstein S. Abnormalities of cardiomyocytes in regions bordering fibrous scars in dogs with chronic heart failure. Int J Cardiol 1997;60:273–279.

    Google Scholar 

  50. Anversa P, Hiler B, Ricci R, Guideri G, Olivetti G. Myocyte cell loss and myocyte hypertrophy in the aging rat heart. J Am Coll Cardiol 1986;8:1441–1448.

    Google Scholar 

  51. Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart: myocyte loss and reactive cellular hypertrophy. Circ Res 1991;68:1560–1568.

    Google Scholar 

  52. Kajstura J, Cheng W, Sarangarajan R, Li P, Li B, Nitahara JA, Chapnick S, Reiss K, Olivetti G, Anversa P. Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Physiol 1996;271:H1215–H1228.

    Google Scholar 

  53. Hockenberg D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bc1–2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348:334–336.

    Google Scholar 

  54. Allsopp TE, Wyatt S, Paterson HF, Davies AM. The proto-oncogene Bc1–2 can selectively rescue neutrophic factor-dependent neurons from apoptosis. Cell 1993;73:295–307.

    Google Scholar 

  55. MacLellan WR, Schneider MD. Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res 1997;81:137–144.

    Google Scholar 

  56. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993;362:786–787.

    Google Scholar 

  57. Wagner AJ, Kokontis JM, Hay N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cipl. Genes Dev 1994;8:2817–2830.

    Google Scholar 

  58. Sharov VG, Sabbah HN, Goussev A, Undrovinas AI, Gupta RC, Lesch M, Goldstein S. Apoptosis associated proteins c-myc and p53 are expressed in cardiomyocytes isolated sfrom dogs with chronic heart failure (abstract). Circulation 1996;94:I–471.

    Google Scholar 

  59. Bialik S, Geenen DL, Sasson IE, Valentino KL, Fritz LC, Kitsis RN. The caspase family of cysteine proteases mediate cardiac myocyte apoptosis during myocardial infarction (abstract). Circulation 1997;96:I–552.

    Google Scholar 

  60. Cahill MA, Peter ME, Kischkel FC, Chinnaiyan AM, Dixit VM, Krammer PH, Nordheim A. CD95 (APO-1/Fas) induces activation of SAP kinases downstream of ICE-like proteases. Oncogene 1996;13:2087–2096.

    Google Scholar 

  61. Okuyama M, Yamaguchi S, Yamaoka M. Soluble form of Fas molecule and expression of Fas antigen in patients with congestive heart failure. Circulation 1997;96:I–150.

    Google Scholar 

  62. Nishigaki K, Minatoguchi S, Seishima M, Asano K, Noda T, Yasuda N, Sano H, Kumada H, Takemura M, Noma A, Tanaka T, Watanabe S, Fujiwara H. Plasma Fas ligand, an inducer of apoptosis, and plasma soluble Fas, an inhibitor of apoptosis, in patients with chronic congestive heart failure. J Am Coll Cardiol 1997;29:1214–1220.

    Google Scholar 

  63. Yamaguchi S, Yamaoka M, Okuyama M. Elevated circulating levels of soluble Fas ligand in patients with congestive heart failure (abstract). Circulation 1997;96:I–150.

    Google Scholar 

  64. Evans GI, Brown L, Whyte M, Harrington E. Apoptosis and the cell cycle. Curr Opin Cell Biol 1995;7:825–834.

    Google Scholar 

  65. Meikrantz W, Schlegel R. Apoptosis and the cell cycle. J Biol Chem 1995;58:160–174.

    Google Scholar 

  66. Kirshenbaum LA, Chakraborty S, Schneider NM. Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev Biol 1996;179:402–411.

    Google Scholar 

  67. King KL, Cidlowski JA. Cell cycle and apoptosis: common pathways to life and death. J Biol Chem 1995;58:5–180.

    Google Scholar 

  68. Reiss K, Cheng W, Giorando A, DeLuca A, Li B, Kajstura J, Anversa P. Myocardial infarction is coupled with activation of cyclin and cyclin-dependent kinases in myocytes. Exp Cell Res 1996;225:44–54.

    Google Scholar 

  69. Jaskulski D, Gatti C, Travali S, Calabretta B, Baserga R. Regulation of the proliferating cell nuclear antigen cyclin and thymidine kinase mRNA levels by growth factors. J Biol Chem 1988;263:10175–10179.

    Google Scholar 

  70. Muller DWM. The role of proto-oncogenes in coronary restenosis. Prog Cardiovasc Dis 1997;40:117–128.

    Google Scholar 

  71. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456–1462.

    Google Scholar 

  72. Sharov VG, Cook JM, Lesch M, Silverman N, Sabbah HN, Goldstein S. Transmural dysfunction of mitochondrial respiration in the failing canine left ventricle (abstract). J Mol Cell Cardiol 1996;28:A142.

    Google Scholar 

  73. Orrenius S, McConkey DJ, Bellomo G, Nicotera P. Role of Ca2+ in toxic cell killing. Trends Pharmacol Sci 1989;10: 281–285.

    Google Scholar 

  74. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994;94:1621–1628.

    Google Scholar 

  75. Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 1994;75: 426–433.

    Google Scholar 

  76. Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG, Anversa P. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 1997;29: 859–870.

    Google Scholar 

  77. Sabbah HN, Sharov VG, Cook JM, Shimoyama H, Lesch M, Goldstein S. Enalapril but not metoprolol improves capillary density and oxygen diffusion distance in left ventricular myocardium of dogs with moderate heart failure (abstract). J Am Coll Cardiol 1996;27:195A.

    Google Scholar 

  78. Shimoyama H, Sabbah HN, Sharov VG, Cook J, Lesch M, Goldstein S. Accumulation of interstitial collagen in the failing left ventricular myocardium is associated with increased anaerobic metabolism among affected cardiomyocytes (abstract). J Am Coll Cardiol 1994;Special Issue:98A.

  79. Laderoute KR, Webster KA. Hypoxia/reoxygeneration stimulates Jun kinase activity through redox signaling in cardiac myocytes. Circ Res 1997;80:336–344.

    Google Scholar 

  80. Seko Y, Tobe K, Ueki K, Kadowaki T, Yazaki Y. Hypoxia and hypoxia/reoxygenation activate Raf-1, mitogen-activated protein kinase kinase, mitogen-activated protein kinase, and S6 kinase in cultured rat cardiac myocytes. Circ Res 1996;78:82–90.

    Google Scholar 

  81. Long X, Crow MT, Lakatta EG. ICE-related proteases are involved in hypoxia-induced apoptosis in cardiac myocytes. Circulation 1977;96:I–737.

    Google Scholar 

  82. Webster KA, Discher DJ, Bishopric NH. Induction and nuclear accumulation of Fos and Jun proto-oncogenes in hypoxic cardiac myocytes. J Biol Chem 1993;268:16852–16858.

    Google Scholar 

  83. Askew DS, Ashmun RA, Simmons BC, Cleland JL. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 1991;6:1915–1922.

    Google Scholar 

  84. Amati B, Littlewood TD, Evan GI, Land H. The c-myc protein induces cell cycle progression and apoptosis through dimerization with Max. EMBO J 1993;12:5083–5087.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabbah, H.N., Sharov, V.G. & Goldstein, S. Cardiomyocyte Apoptosis in Experimental Health Failure. Heart Fail Rev 3, 35–43 (1998). https://doi.org/10.1023/A:1009702513648

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009702513648

Keywords

Navigation